• Title/Summary/Keyword: two-fluid flow

Search Result 1,933, Processing Time 0.026 seconds

Numerical analysis on two-phase flow-induced vibrations at different flow regimes in a spiral tube

  • Guangchao Yang;Xiaofei Yu;Yixiong Zhang;Guo Chen;Shanshan Bu;Ke Zhang;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1712-1724
    • /
    • 2024
  • Spiral tubes are used in a wide range of applications and it is significant to understand the vibration introduced by two-phase flow in spiral tubes. In this paper, the numerical method is used to study the vibration induced by the gas-liquid two-phase flow in a spiral tube with different flow regimes. The pressure fluctuation characteristics at the pipe wall and the solid vibration response characteristics are obtained. The results show that the motion of small bubbles in bubbly flow leads to small pressure fluctuations with low-frequency broadband (0-50 Hz). The motion of the gas plug in the plug flow causes small amplitude periodic pressure fluctuation with a shortened low-frequency broadband (0-15 Hz) compared to the bubbly flow. The motion of the gas slug in the slug flow causes large periodic fluctuations in pressure with a significant dominant frequency (6-7 Hz). The wavy flow is very stable and has a distinct main frequency (1-2 Hz). The vibration regime in the bubbly flow and wave flow are close to the first-order mode, and the vertical vibrating component is dominant. The plug flow and slug flow excite higher-order vibration modes, and the lateral vibration component plays more important part in the vibration response.

A Numerical Study on the Flowfield of a Cyclone Separator for Oil Droplets (오일입자 원심분리기 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.36-41
    • /
    • 2015
  • The cyclone separator is a simple device, which causes the centrifugal separation of materials such as droplets or particles in a fluid stream. The cyclone separator utilizes the energy obtained from fluid pressure and linear motion to create rotational fluid motion. This rotational motion leads the materials suspended in the fluid to separate from the fluid quickly due to the centrifugal force. The rotation is produced by the tangential or involuted introduction of fluid into the vessel. These materials may be droplets of fuel in blow-by gas through an engine. Droplets suspended in the feed liquid may separate according to size, shape, or density. And the change of part dimension in a cyclone separator can yield the its performance variation. The current study shows the influence of design parameters on the performance of a cyclone separator for blow-by gas.

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

DEVELOPMENT OF AN IMPROVED FARE TOOL WITH APPLICATION TO WOLSONG NUCLEAR POWER PLANT

  • Lee, Sun Ki;Hong, Sung Yull
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.257-264
    • /
    • 2013
  • In Canada Deuterium Uranium (CANDU)-type nuclear power plants, the reactor is composed of 380 fuel channels and refueling is performed on one or two channels per day. At the time of refueling, the fluid force of the cooling water inside the channel is exploited. New fuel added upstream of the fuel channel is moved downstream by the fluid force of the cooling water, and the used fuel is pushed out. Through this process, refueling is completed. Among the 380 fuel channels, outer rows 1 and 2 (called the FARE channel) make the process of using only the internal fluid force impossible because of the low flow rate of the channel cooling water. Therefore, a Flow Assist Ram Extension (FARE) tool, a refueling aid, is used to refuel these channels in order to compensate for the insufficient fluid force. The FARE tool causes flow resistance, thus allowing the fuel to be moved down with the flow of cooling water. Although the existing FARE tool can perform refueling in Korean plants, the coolant flow rate is reduced to below 80% of the normal flow for some time during refueling. A Flow rate below 80% of the normal flow cause low flow rate alarm signal in the plant operation. A flow rate below 80% of the normal flow may cause difficulties in the plant operation because of the increase in the coolant temperature of the channel. A new and improved FARE tool is needed to address the limitations of the existing FARE tool. In this study, we identified the cause of the low flow phenomena of the existing FARE tool. A new and improved FARE tool has been designed and manufactured. The improved FARE tool has been tested many times using laboratory test apparatus and was redesigned until satisfactory results were obtained. In order to confirm the performance of the improved FARE tool in a real plant, the final design FARE tool was tested at Wolsong Nuclear Power Plant Unit 2. The test was carried out successfully and the low flow rate alarm signal was eliminated during refueling. Several additional improved FARE tools have been manufactured. These improved FARE tools are currently being used for Korean CANDU plant refueling.

Performance Characteristics of an Axial Flow Fan According to the Shape of a Hub Cap (허브 캡 형상에 따른 축류송풍기 성능특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.9-16
    • /
    • 2006
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces a negative incidence, thus invokes separated flow on the blade surfaces and deteriorates the performance of fan rotor.

Performance Test of Turbine Flowmeter According to Temperature Variation (온도변화에 따른 터빈유량계의 성능 시험)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.47-52
    • /
    • 2017
  • In general industry, TFM(turbine flow meters) as measuring instruments having high reliability are widely used in the trade of petroleum and in the measurement of tap water and hot water. The TFM is performed calibration for using in the field and is mainly calibrated at room temperature. Since accuracy of TFM depends on Reynolds number of fluid, TFM is calibrated at same Reynolds number by changing flow rate. Furthermore, the TFM using a fluid of high temperature should have considered for other factors such as the thermal expansion of the parts and characteristics change is unknown changes in the turbine flow meter accordingly. In this paper, two turbine flowmeter are experimentally studied about characteristics change using the facilities which can change fluid temperature from 6 degree celsius to 90 degree celsius. As a result, the turbine flow meter can be calibrated to minimize the error characteristic at a similar temperature and the actual temperature.

A Numerical Prediction for the Thermo-fluid Dynamic and Missile-motion Performance of Gas-Steam Launch System (수치모사를 통한 가스-스팀 발사체계의 열유동과 탄의 운동성능 예측)

  • Kim, Hyun Muk;Bae, Seong Hun;Bae, Dae Seok;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.591-595
    • /
    • 2017
  • Numerical simulations were carried out to analyze thermo-fluid dynamic and missile-motion performance by using two-phase flow model and dynamic grid system. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

  • PDF

CFD simulations of the fluid flow behavior in a spacer-filled membrane module

  • Jun, Chen L.;Xiang, Jia Y.;Dong, Hu Y.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.513-524
    • /
    • 2015
  • In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.

Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions

  • Huang, Shenghong;Li, Rong;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.197-212
    • /
    • 2013
  • With more and more high-rise building being constructed in recent decades, bluff body flow with high Reynolds number and large scale dimensions has become an important topic in theoretical researches and engineering applications. In view of mechanics, the key problems in such flow are high Reynolds number turbulence and fluid-solid interaction. Aiming at such problems, a parallel fluid-structure interaction method based on socket parallel architecture was established and combined with the methods and models of large eddy simulation developed by authors recently. The new method is validated by the full two-way FSI simulations of 1:375 CAARC building model with Re = 70000 and a full scale Taipei101 high-rise building with Re = 1e8, The results obtained show that the proposed method and models is potential to perform high-Reynolds number LES and high-efficiency two-way coupling between detailed fluid dynamics computing and solid structure dynamics computing so that the detailed wind induced responses for high-rise buildings can be resolved practically.

THE CUPID CODE DEVELOPMENT AND ASSESSMENT STRATEGY

  • Jeong, J.J.;Yoon, H.Y.;Park, I.K.;Cho, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.636-655
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been being developed for the realistic analysis of transient two-phase flows in nuclear reactor components. The CUPID code development was motivated from very practical needs, including the analyses of a downcomer boiling, a two-phase flow mixing in a pool, and a two-phase flow in a direct vessel injection system. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations are solved over unstructured grids with a semi-implicit two-step method. This paper presents an overview of the CUPID code development and assessment strategy. It also presents the code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER.