• Title/Summary/Keyword: two-fluid equation

Search Result 421, Processing Time 0.021 seconds

An Incompressible Flow Computation by a Hierarchical Iterative Preconditioning (계층적 반복의 예조건화에 의한 비압축성 유동 계산)

  • Kim J. W.;Jeong C. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.91-98
    • /
    • 2004
  • In two dimensional incompressible flows, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a stabilized finite element formulation. The stabilization has been peformed by a modified residual method proposed by Illinca et. al.[3]. The stabilization which is necessary to escape from the LBB constraint renders an equal order formulation. In this paper, we increased the order of interpolation whithin an element up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flow showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

  • PDF

2D Computational Analysis of Overtopping Wave Energy Convertor

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.

Numerical Analysis of the Development of an Air Conditioning Duct for Marine and Oil Drilling Ships (해양 시추선용 공조덕트 개발에 대한 수치해석)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.50-55
    • /
    • 2017
  • This study is about the distributions of flow in an air conditioning duct used for marine and oil drilling ships. Three-dimensional steady state turbulence was assumed as a governing equation for describing the flow in the air conditioning duct in this study. We compared the flow field with the pressure distribution according to the inlet velocity for two types of air conditioning duct, and stress and safe factors were simulated using ANSYS W/B. The result of fluid analysis showed an increased pressure drop in the duct according to the inlet velocity. Furthermore, secondary flow and complicated flow characteristics occurred at the bellows zone.

Development of 3-Dim FEM Multi-Material Hydrocode (3차원 FEM 다중물질 하이드로코드 개발 현황)

  • Lee, Min-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.116-123
    • /
    • 2008
  • Hydrocodes are large computer programs that can be used to solve a wide variety of highly transient problems such as high-speed impact and explosion events. This paper describes the recent activity to develop a Multi-material hydrocode in Korea. The code consists of two stages; Lagrangian, and remap stages. Although a sophisticated contact algorithm has been developed for Lagrangian calculations, a relatively simple mechanics at the interfaces of materials are used in the multi-material Eulerian code. Volume of fluid interface reconstruction methods are used to resolve the interfaces between different materials. For the advection stage of the cell centered properties, one-dimensional hyperbolic equation is used. Test problems demonstrated here are the high-speed impact/penetration and explosion problems.

A Numerical Study on the Generation of Aeroacoustic Sound from Centrifugal Fans (청소기용 터보홴의 공력소음 발생에 관한 수치적 연구)

  • Jeon, Wan-Ho;Kim, Chang-Joon;Rew, Ho-Seon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.69-75
    • /
    • 2001
  • A new method to calculate the aeroacoustic pressure of a centrifugal fan was developed The fan consists of an impeller, diffuser and circular casing. Due to the high rotating velocity and the small gap between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and its harmonic frequencies. The aeroacoustic pressure is calculated acoustic analogy In this paper, only dipole term is considered in the equation. The acoustics generated by moving impeller and stationary diffuser is calculated separately. The unsteady flow field data is calculated by the vortex method The predicted acoustic pressure agrees very well to the measured data. The difference of the two is smaller than 3dBA.

  • PDF

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

Application of Pressure Correction Method to CFD Work for 8 Centrifugal Compressor Impellers (압력보정법을 이용한 8개의 원심압축기 임펠러 CFD의 적용 연구)

  • Oh, Jongsik;Ro, SooHyuk;Hyun, YongIk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.226-235
    • /
    • 2000
  • Two representative finite volume methods, i.e., the time marching method and the pressure correction method, were applied to 8 centrifugal compressor impeller flows, with low to very high level of pressure ratio, among which 7 impellers' experimental performance is given in the open literature. The present study is focused on the prediction differences from both methods, developed by the authors, in the pressure correction method's point of view. In all cases, the time marching method gives a satifactory solution, but the pressure correction method does not. Up to about $18\%$ less level of total-to-total pressure ratio is predicted by the pressure correction method as the level of the impeller pressure ratio increases up to about 10. The drop of total pressure ratio is caused by the underestimation of static pressure rise which seems to be attributed to inappropriate linearization and discretization of the pressure/density coupling terms in the pressure correction equation.

  • PDF

Characteristics of Wave Dissipation with Circular Cylinders (원형파일군에 의한 파랑의 감쇠특성)

  • Lee, Seong-Dae;Park, Jung-Chul;Hong, Chang-Bae;Nam, Mi-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.573-574
    • /
    • 2006
  • This research deals with the wave transmission and dissipation problems for two dimensional regular waves and s vertical circular cylindersr. Using the unsteady mild slope equation, a numerical model has been developed to calculate the reflection and transmission of regular waves from a multiple-row vertical circular cylinders. In addition hydraulic model experiments have been conducted with different values of properties between the cylinders and opening ratio (distances) between the rows of the cylinders. It is found that the transmission coefficients decrease with decreasing the opening ratio and increasing the rows of vertical cylinders. Comparison between hydralic and numerical experiments results shows resonable agreement.

  • PDF

Numerical Study on Droplet Spread Motion after impingement on the wall using improved CIP method (수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구)

  • Son, S.Y.;Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.109-114
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

  • PDF

Heat transfer characteristics by an oscillating flow in a tube with a regenerator (재생기가 포함된 원관내 왕복유동에 의한 열전달 특성)

  • Lee, Geon-Tae;Gang, Byeong-Ha;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.428-439
    • /
    • 1998
  • Fluid flow and heat transfer have been numerically investigated for an oscillating flow in a tube with a regenerator. The regenerator is placed between hot and cold spaces which are heated and cooled at uniform temperature. An oscillating flow is generated by the piston motion at both ends of a tube. The time dependent, two-dimensional Navier-Stokes equations and energy equation are solved by using the finite-volume and moving grid method. The regenerator is adopted as Brinkmann-Forchheimer extended Darcy model. Numerical results are obtained for the flow and temperature fields, and described the effects of the oscillating frequency and amplitude ratio by the piston motion as well as the aspect ratio. The numerical results obtained indicate that the heat transfer between the tube wall and oscillating flow is increased as the oscillating frequency, amplitude ratio and the aspect ratio are increased.