• Title/Summary/Keyword: two-dimensional river model

Search Result 184, Processing Time 0.032 seconds

Numerical Model for Flood Inundation Analysis in a River(I) : GIS Application (하천 홍수범람해석을 위한 수치모형의 개발(I) : GIS와의 연계해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.415-427
    • /
    • 1998
  • FIAS (Flood Inundation Analysis System) using Arc/Info is developed and applied to the South Han River basin. The DWOPER model is revised and expanded to handle simultaneous multiple overtopping and/or breaking and to estimate the inundation depth and extents. The model is applied to an actual levee overtopping case, which occurred on August 23~27, 1995 in the South Han River. Stage hydrographs inside and outside of the levee are compared, then inundated discharges from overbank spilling are computed. The Graphic User Interface is developed with AML(Arc/Info Macro Language). Two-and three-dimensional inundation maps by Arc/Info are presented. The computed inundation extends agree with observations in terms of inundation depth and flooded area. Keywords : River, Floodwave, Flood Inundation, Geographic Information System.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Analysis of the vegetation effects on the flow in Chopyeong Island of the Imjin River using a HEC-RAS 2D model (HEC-RAS 2D 모형을 이용한 임진강 초평도 식생이 흐름에 미치는 영향 분석)

  • Lee, Du Hana;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.575-586
    • /
    • 2023
  • River vegetation has important functions such as providing a habitat for the river ecosystem and physical stability of the river bank. It also has adverse effects such as aggravating flood damages due to the increase in roughness coefficient and drag forces. River vegetation management is very important in finding a balance between flood and ecological management. There are still many uncertainties about the effect of vegetation on rivers. In this study, in order to analyze the effect of vegetated flow, the flow patterns according to the vegetation roughness are analyzed through a two-dimensional unsteady flow model for Chopyeong island of the Imjin River. According to the results of the 2D flow analysis using the HEC-RAS 2D model, the velocity distribution in the bend of the Imjin River was greatly affected by the vegetation roughness of Chopyeong Island. The formation of the main flow outside the bend of Chopyeong Island during flooding is presumed due to the influence of tree and grass on Chopyeong Island. If tree are distributed throughout Chopyeong Island, the velocity outside the bend is expected to be higher. River vegetation causes the effect of raising the water level, and could cause a change in the velocity distribution.

Evaluation of River Flood Stability after River Restoration (하천 복원 후의 홍수위 안정성 검토)

  • Kim, Byeong-Chan;Lee, Jong-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.417-426
    • /
    • 2009
  • The eco-friendly river restoration issue has been increased and the importance of the vegetation along the river banks has been understood with its scenery and significant role. However vegetation reduces the stream flow cross section and brings negative effects such as increase of water flow resistance and decreases of river flow velocity. In this study, the method to choose roughness coefficient is studied in the sudden changed hydraulic characteristics by river restoration. Using the HEC-RAS model and the two-dimensional vertical analysis method, Yangjae stream was calculated that the roughness coefficient of the main channel is 0.011~0.159 after river restoration, 0.031 without vegetation on the flood plain, and 0.034~0.506 with vegetation on the flood plain. The level of water in the river is predicted to rise 0.13~0.34m at 30% of vegetation density increase.

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.

Analysis of Hydraulic Characteristics Depending Upon the Geometrical and Discharge Condition at Channel Junctions (하도 합류부의 기하학적 특성과 유량조건에 따른 수리학적 특성 해석)

  • Ahn, Seung-Seop;Choi, Soo-Chul;Yim, Dong-Hee
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.495-503
    • /
    • 2007
  • In this study, we took the geometrical character of the river channel junction and hydrologic conditions as independent variables, and hydraulic behavior characteristics as an independent variable. The result, after multiple analysis was carried out, proved that, except for the generating area of the accelerating zone of velocity the accelerating zone and both the main channel and the tributary zone of stagnation the stagnation zone, there was correlation of over 90%. Also, derived presumed expression of the hydraulic characteristics of the junction was applied to the real natural channel - the river channel of the Guem-ho main channel(the A-yang bridge to the Guem-ho bridge). As the result, it proved that it represented hydraulic characteristics relatively well.

Flow Simulation in a Meandering Channel using a 2-dimensional Numerical Model (이차원 수치모형을 이용한 사행하도 흐름모의)

  • Lee, Haegyun;Lee, Namjoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.485-492
    • /
    • 2013
  • The point sand bars of Hahoi Village on Nakdong River have undergone considerable changes including fluvial and vegetation characteristics due to flood regulation by the dams constructed upstream. In this study, the numerical fluvial/sediment and water quality model, KU-RLMS, is applied to the aquatic area near Hahoi Village (middle/upper region of the Nakdong River) for clarifying the mechanisms of changes in hydraulic and aquatic characteristics. The fixed-bed hydraulic experiment was carried out for horizontal two-dimensional numerical model. The numerical simulation reveals that flow is accelerated near the left bank of Booyongdae downstream of the Hahoi Village area. Circulatory flow pattern was observed at the right bank downstream of Hahoi Village. The simulation was in good agreement with the hydraulic/physical experiment. For the discharge of design flood, at the area of circulatory flow pattern, the superelevation of about 1.0 m at the right bank was predicted compared to the left bank of high flow velocity, which is also in good agreement with hydraulic experiment.

Evaluation of the Performance of Water Quality Models for the Simulation of Reservoir Flushing Effect on Downstream Water Quality (저수지 플러싱 방류가 하류 수질에 미치는 영향 모의를 위한 수질모델의 성능 평가)

  • Jung, Yong Rak;Chung, Se Woong;Yoon, Sung Wan;Oh, Dong Geun;Jeong, Hee Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • A two-dimensional (2D), laterally-averaged hydrodynamic and water quality model, CE-QUAL-W2 was applied to evaluate the performance on simulating the effect of flushing from Daecheong Reservoir on the downstream water quality variations during the flushing events held on November, 2003 and March, 2008. The hydraulic and water quality simulation results were compared with field measurement data, as well as a one-dimensional (1D), unsteady model (KORIV1) that revealed limited capability in the previous study due to missing the resuspension process of river bottom sediments. The results showed that although the 2D model made satisfactory performance in reproducing the temporal variations of dissolved matters including phosphate, ammonia and nitrate, it revealed poor performance in simulating the increase of biological oxygen demand and suspended sediment (SS) concentrations during the passage of the flushing flow. The reason of the error was that the resuspension process of the 2D model is only the function of shear stress induced by wind. In reality, however, as shown by significant correlation between bottom shear stress ($\tau$) and observed SS concentration, the resuspension process can be significantly influenced by current velocity in the riverine system, especially during flushing event. The results indicate that the resuspension of river bottom materials should be incorporated into the water quality modeling processes if $\tau$ is greater than a critical shear stress (${\tau}_c$) for better simulation of flushing effect.

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model (1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의)

  • Noh, Joonwoo;Kim, Sang-Ho;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.