• Title/Summary/Keyword: two-dimensional motion

Search Result 801, Processing Time 0.027 seconds

Interactive Locomotion Controller using Inverted Pendulum Model with Low-Dimensional Data (역진자 모델-저차원 모션 캡처 데이터를 이용한 보행 모션 제어기)

  • Han, KuHyun;Kim, YoungBeom;Park, Byung-Ha;Jung, Kwang-Mo;Han, JungHyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1587-1596
    • /
    • 2016
  • This paper presents an interactive locomotion controller using motion capture data and inverted pendulum model. Most of the data-driven character controller using motion capture data have two kinds of limitation. First, it needs many example motion capture data to generate realistic motion. Second, it is difficult to make natural-looking motion when characters navigate dynamic terrain. In this paper, we present a technique that uses dimension reduction technique to motion capture data together with the Gaussian process dynamical model (GPDM), and interpolates the low-dimensional data to make final motion. With the low-dimensional data, we can make realistic walking motion with few example motion capture data. In addition, we apply the inverted pendulum model (IPM) to calculate the root trajectory considering the real-time user input upon the dynamic terrain. Our method can be used in game, virtual training, and many real-time applications.

A JOINT DISTRIBUTION OF TWO-DIMENSIONAL BROWNIAN MOTION WITH AN APPLICATION TO AN OUTSIDE BARRIER OPTION

  • Lee, Hang-Suck
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.245-254
    • /
    • 2004
  • This paper derives a distribution function of the terminal value and running maximum of two-dimensional Brownian motion {X($\tau$) = (X$_1$($\tau$), X$_2$ ($\tau$))', $\tau$ 〉0}. One random variable of the joint distribution is the terminal time value, X$_1$ (T). The other random variable is the maximum of the Brownian motion {X$_2$($\tau$), $\tau$〉} between time s and time t. With this distribution function, this paper also derives an explicit pricing formula for an outside barrier option whose monitoring period starts at an arbitrary date and ends at another arbitrary date before maturity.

Reliability and Validity of Measurement Using Smartphone-Based Goniometer of Tibial External Rotation Angle in Standing Knee Flexion

  • Jeon, In-Cheol;Kwon, Oh-Yun;Weon, Jong-Hyuck;Ha, Sung-Min;Kim, Si-Hyun
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.60-68
    • /
    • 2013
  • The purpose of this study was to assess the intra-rater test-retest reliability of tibial external rotation angle measurement using a smartphone-based photographic goniometer, DrGoniometer (DrG) compared to a three-dimensional motion analysis system (Vicon). The current study showed an interchangeable method using DrG to measure the tibial external rotation angle in standing knee flexion at $90^{\circ}$. Twelve healthy subjects participated in this study. A rest session was conducted 30 minutes later for within-day reliability and five days later for between-day intra-rater test-retest reliability. To assess the validity of the measurement using DrG, we used a three dimensional motion analysis system as a gold standard to measure the angle of tibial external rotation. Intra-class correlation coefficient (ICC) and the standard error of measurement (SEM) values were used to determine the within- and between- day intra-rater test-retest reliability of using DrG and a three dimensional motion analysis system. To assess validity, Pearson correlation coefficients were used for two measurement techniques. The measurement for tibial external rotation had high intra-rater test-retest reliability of within-day (ICC=.88) and between-day (ICC=.83) reliability using DrG and of within-day (ICC=.93) and between-day (ICC=.77) reliability using a three-dimentional motion analysis system. Tibial external rotation angle measurement using DrG was highly correlated with those of the three-dimensional motion analysis system (r=.86). These results represented that the tibial external rotation angle measurement using DrG showed acceptable reliability and validity compared with the use of three-dimensional motion analysis system.

A Fixed Grid Finite Volume Analysis of Multi-Dimensional Freeze Drying Process under Vacuum Condition (고정격자계에서 유한체적법을 이용한 진공동결건조 과정의 열 및 물질전달에 대한 연구)

  • Chi-Sung, Song
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.981-992
    • /
    • 2004
  • Freeze drying under vacuum condition is a complex process that involves simultaneous heat and mass transfer, sublimation of ice, and motion of sublimation front. Proper treatment of the motion of sublimation interface is crucial for an accurate prediction of the freeze drying process. Based on the enthalpy formulation that has been successfully used in liquid/solid phase change problems. a fixed grid method. streamlined for the freeze drying analysis. was developed in this study. The accuracy of the fixed grid method was checked by solving a one-dimensional tray freeze drying and a two-dimensional vial freeze drying problem and then comparing the results with those by the moving grid method. Finally. the freeze drying characteristics of two-dimensional slab and axis-symmetric cylinder was investigated using the fixed grid method.

2-Dimensional Analysis of Full Rake TGV-K on Crashworthiness (고속전철 TGV-K 전체 차량의 2차원 충돌해석)

  • 구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.545-552
    • /
    • 1998
  • A study on collision analysis of TGV-K using a 2-dimensional model is described to evaluate its crashworthiness. Two-dimensional analysis gives good information on overriding behaviour and impact forces applied to interconnecting devices such as side buffers, ball & socket joints, hooks, pins, and fingers. Since the headstock of TGV-K is not designed in a crashworthy point of view, its conceptual design fur KHST(Korean High Speed Train), under development, is suggested to improve crashworthiness. The suggested design, which adopts an energy absorber and a crashworthy headstock, is compared with the conventional headstock on dynamic behaviour to the vertical direction under the accident scenario of SNCF (collision at 110km/h against a movable rigid mass of 15 ton). It is concluded that the design modification make little difference in vertical motion. To evaluate validation of the 2-dimensional model, the results fur longitudinal motion is compared with those of 1-dimemsional one. It is found that the two results are in good agreements.

  • PDF

The Motion Analysis of the Scaphoid, Capitate and Lunate During Dart-Throwing Motion Using 3D Images (3차원 영상을 이용한 다트 던지기 운동에서의 주상골, 유두골, 월상골의 움직임 분석)

  • Park, Chan-Soo;Kim, Kwang-Gi;Kim, Yu-Shin;Jeong, Chang-Bu;Jang, Ik-Gyu;Lee, Sang-Lim;Oh, Su-Chan;Yu, Do-Hyun;Baek, Goo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.144-150
    • /
    • 2011
  • The primary purpose of this study was to analyze the motion of the scaphoid, capitate, and lunate during dart-throwing motion by three-dimensional modeling. Five series of CT images of five normal right wrists were acquired from five motion steps from radial extension to ulnar flexion in the dart-throwing motion plane. Segmentation and three-dimensional modeling of bones from CT images was performed using Analyze. Distances among centroids of the scaphoid, capitate and lunate and angles between principal axes of three carpal bones were calculated to analyze the motion by using MATLAB. As the wrist motion changed from radial extension to ulnar flexion, the distance between two adjacent bones decreased. The scaphoid and lunate rotated less than the capitates during dart-throwing motion. This study reports the Three-dimensional in vivo measurement of carpal motion using CT images.

Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane (해상 크레인 탄성 붐 적용을 위한 3D 빔(beam) 유한 요소 정식화 및 자동화)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul;Ham, Seung-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.411-417
    • /
    • 2010
  • In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.

Chaotic Rocking Vibration of a Rigid Block with Sliding Motion Under Two-Dimensional Harmonic Excitation

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1040-1053
    • /
    • 2002
  • This research deals with the influence of nonlinearities associated with impact and sliding upon the rocking behavior of a rigid block, which is subjected to two-dimensional horizontal and vertical excitation. Nonlinearities in the vibration were found to depend strongly on the effect of the impact between the block and the base, which involves an abrupt reduction in the system's kinetic energy. In particular, when sliding occurs, the rocking behavior is substantially changed. Response analysis using a non-dimensional rocking equation was carried out for a variety of excitation levels and excitation frequencies. The chaos responses were observed over a wide response region, particularly, in the cases of high vertical displacement and violent sliding motion, and the chaos characteristics appear in the time histories, Poincare maps, power spectra and Lyapunov exponents of the rocking responses. The complex behavior of chaotic response, in phase space, is illustrated by the Poincare map. The distribution of the rocking response is described by bifurcation diagrams and the effects of sliding motion are examined through the several rocking response examples.

Numerical Simulation of Two-dimensional Floating Body Motion in Waves Using Particle Method (입자법에 의한 파랑중 2차원 부유체 운동 시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • A moon-pool is a vertical well in a floating barge, drilling ship, or offshore support vessel. In this study, numerical simulation of two-dimensional moon-pool flaw coupled with a ship's motion in waves is carried out using a particle method, the so-called MPS method. The particle method, which is recognized as one of the gridless methods, was developed to investigate nonlinear free-surface motions interacting with structures. The method is more feasible and effective than convectional grid methods in order to solve a flaw field with complicated boundary shapes.