• 제목/요약/키워드: two-component signal transduction

검색결과 30건 처리시간 0.163초

Identification of Two-Component Regulatory Genes Involved in o-Xylene Degradation by Rhodococcus sp. Strain DK17

  • Kim, Doc-Kyu;Chae Jong-Chan;Zylstra Gerben J.;Sohn Ho-Yong;Kwon, Gi-Seok;Kim, Eung-Bin
    • Journal of Microbiology
    • /
    • 제43권1호
    • /
    • pp.49-53
    • /
    • 2005
  • Putative genes for a two-component signal transduction system (akbS and akbT) were detected near the alkylbenzene-degrading operon of Rhodococcus sp. DK17. Sequence analysis indicates that AkbS possesses potential ATP-binding and histidine autophosphorylation sites in the N- and C-terminal regions, respectively, and that AkbT has a typical response regulator domain. Mutant analysis combined with RT-PCR experiments further shows that AkbS is required to induce the expression of o-xylene dioxygenase in DK17.

Two-component Signal Transduction in Synechocystis sp. PCC 6803 under Phosphate Limitation: Role of Acetyl Phosphate

  • Juntarajumnong, Waraporn;Eaton-Rye, Julian J.;Incharoensakdi, Aran
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.708-714
    • /
    • 2007
  • The two-component signal transduction, which typically consists of a histidine kinase and a response regulator, is used by bacterial cells to sense changes in their environment. Previously, the SphS-SphR histidine kinase and response regulator pair of phosphate sensing signal transduction has been identified in Synechocystis sp. PCC 6803. In addition, some response regulators in bacteria have been shown to be cross regulated by low molecular weight phosphorylated compounds in the absence of the cognate histidine kinase. The ability of an endogenous acetyl phosphate to phosphorylate the response regulator, SphR in the absence of the cognate histidine kinase, SphS was therefore tested in Synechocystis sp. PCC 6803. The mutant lacking functional SphS and acetate kinase showed no detectable alkaline phosphatase activity under phosphate-limiting growth conditions. The results suggested that the endogenous acetyl phosphate accumulated inside the mutants could not activate the SphR via phosphorylation. On the other hand, exogenous acetyl phosphate could allow the mutant lacking functional acetate kinase and phosphotransacetylase to grow under phosphate-limiting conditions suggesting the role of acetyl phosphate as an energy source. Reverse transcription PCR demonstrated that the transcripts of acetate kinase and phospho-transacetylase genes in Synechocystis sp. PCC 6803 is up-regulated in response to phosphate limitation suggesting the importance of these two enzymes for energy metabolism in Synechocystis cells

Inter-Domain Signal Transmission within the Phytochromes

  • Song, Pill-Soon
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.215-225
    • /
    • 1999
  • Phytochromes (with gene family members phyA, B, C, D, and E) are a wavelength-dependent light sensor or switch for gene regulation that underscore a number of photo responsive developmental and morphogenic processes in plants. Recently, phytochrome-like pigment proteins have also been discovered in prokaryotes, possibly functioning as an auto-phosphorylating/phosphate-relaying two-component signaling system (Yeh et al., 1997). Phytochromes are photochromically convertible between the light sensing Pr and regulatory active Pfr forms. Red light converts Pr to Pfr, the latter having a "switch-on" conformation. The Pfr form triggers signal transduction pathways to the downstream responses including the expression of photosynthetic and other growth-regulating genes. The components involved in and the molecular mechanisms of the light signal transduction pathways are largely unknown, although G-proteins, protein kinases, and secondary messengers such as $Ca^{2+}$ ions and cGMP are implicated. The 124-127 kDa phytochromes form homodimeric structures. The N-terminal half contains the tetrapyrrolic phytochromobilin for red/far-red light absorption. The C-terminal half includes both a dimerization motif and regulatory box where the red light signal perceived by the chromophore-domain is recognized and transduced to initiate the signal transduction cascade. A working model for the inter-domain signal communication within the phytochrome molecule is proposed in this Review.

  • PDF

Induction of Signal Transduction Pathway Genes in Dendritic Cells by Lipopolysaccharides from Porphyromonas gingivalis and Escherichia coli

  • Jin, Ho-Kyeong;Lee, Young-Hwa;Jeong, So-Yeon;Na, Hee-Sam;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.113-119
    • /
    • 2010
  • Porphyromonas (P.) gingivalis lipopolysaccharide (Pg LPS) is the major pathogenic component of periodontal disease. In this study, we have attempted to determine the expression profiles of the signal transduction pathway genes induced by Pg LPS in comparison with Escherichia (E.) coli LPS (Ec LPS). DC2.4 cells were treated for two hours with $1\;{\mu}g/ml$ of Pg LPS or $0.5\;{\mu}g/ml$ of Ec LPS. The total RNA from these cells was then isolated and reverse-transcribed. Gene expression profiles were then analyzed with a signal transduction pathway finder GEArray Q series kit and significant changes in expression were confirmed by real-time PCR. The microarray results indicated that several genes, including Tnfrsf10b, Vcam1, Scyb9, Trim25, Klk6, and Stra6 were upregulated in the DC2.4 cells in response to Pg LPS treatment, but were downregulated or unaffected by Ec LPS. Realtime PCR revealed that the expression of Trim25, Scyb9 and Tnfrsf10b was increased over the untreated control. Notably, Trim25 and Tnfrsf10b were more strongly induced by Pg LPS than by Ec LPS. These results provide greater insight into the signal transduction pathways that are altered by P. gingivalis LPS.

Bacillus subtilis의 Pho Regulon을 통한 인산 결핍 스트레스 반응 (Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis)

  • 박재용
    • 미생물학회지
    • /
    • 제46권2호
    • /
    • pp.113-121
    • /
    • 2010
  • 인산 결핍기에 직면한 Bacillus subtilis는 PhoP-PhoR twocomponent system (TCS)를 통해 이러한 상황을 인식하고 생존을 유지하기 위해 Pho regulon으로 불리는 일련의 유전자들의 발현을 조절한다. 이때 histidine kinase인 PhoR은 자동 인산화되어, 인산을 response regulator인 PhoP에 전달한다. 인산화된 PhoP (PhoP~P)는 Pho regulon 유전자의 프로모터(promoter) 부위에 존재하는 반복되는 6 bp의 잘 보존된 PhoP 결합서열에 결합하여 해당 유전자의 발현을 활성화시키거나 억제한다. 이러한 Pho regulon 신호전달 시스템은 최소한 세 개의 TCS (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), 광범위한 탄소대사 조절자(CcpA), 전위기 조절자(AbrB, ScoC) 등을 포함하는 신호전달 시스템과 밀접하게 상호 연결되어 있을 뿐만 아니라, 생육에 필수적인 YycF-YycG TCS와 상호조절을 통한 밀접한 관련을 가지고 있다. Pho regulon에 의한 인산결핍 스트레스 반응을 이해하는데 많은 진척이 있었으나, 많은 의문들은 여전히 남아있다. 이러한 의문들을 푸는 일은 B.subtilis의 응용연구에 중요한 정보를 제공할 것이다.

Signal Transduction Pathways: Targets for Green and Black Tea Polyphenols

  • Bode, Ann M.;Dong, Zigang
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.66-77
    • /
    • 2003
  • Tea is one of the most popular beverages consumed in the world and has been demonstrated to have anti-cancer activity in animal models. Research findings suggest that the polyphenolic compounds, (-)-epigallocatechin-3-gallate, found primarily in green tea, and theaflavin-3,3'-digallate, a major component of black tea, are the two most effective anti-cancer factors found in tea. Several mechanisms to explain the chemopreventive effects of tea have been presented but others and we suggest that tea components target specific cell-signaling pathways responsible for regulating cellular proliferation or apoptosis. These pathways include signal transduction pathways leading to activator protein-1 (AP-1) and/or nuclear factor kappa B(NF-${\kappa}B$ ). AP-1 and NF-${\kappa}B$ are transcription factors that are known to be extremely important in tumor promoter-induced cell transformation and tumor promotion, and both are influenced differentially by the MAP kinase pathways. The purpose of this brief review is to present recent research data from other and our laboratory focusing on the tea-induced cellular signal transduction events associated with the MAP kinase, AP-1, and NF-${\kappa}B$ pathways.

Regulation of Class II Bacteriocin Production by Cell-Cell Signaling

  • Quadri, Luis E.N.
    • Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.175-182
    • /
    • 2003
  • Production of ribosomally synthesized antimicrobial peptides usually referred to as bacteriocins is an inducible trait in several gram positive bacteria, particularly in those belonging to the group of lactic acid bacteria. In many of these organisms, production of bacteriocins is inducible and induction requires secretion and extracellular accumulation of peptides that act as chemical messengers and trigger bacteriocin production. These inducer peptides are often referred to as autoinducers and are believed to permit a quorum sensing-based regulation of bacteriocin production. Notably, the peptides acting as autoinducers are dedicated peptides with or without antimicrobial activity or the bacteriocins themselves. The autoinducer-dependent induction of bacteriocin production requires histidine protein kinases and response regulator proteins of two-component signal transduction systems. The current working model for the regulation of class II bacteriocin production in lactic acid bacteria and the most relevant direct and indirect pieces of evidence supporting the model are discussed in this minireview.

Insights into Eukaryotic Multistep Phosphore lay Signal Transduction Revealed by the Crystal Structure of Ypd1p from Saccharomyces cerevisiae

  • Song, Hyun-Kyu;Lee, Jae-Young;Lee, Myong-Gyong;Jinho Moon;Kyeongsik Min;Yang, Jin-Kuk;Suh, Se-Won
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.13-13
    • /
    • 1999
  • "Two-component" phosphorelay signal transduction systems constitute a potential target for antibacterial and antifungal agents, since they are found exclusively in prokaryotes and lower eukaryotes (yeast, fungi, slime mold, and plants) but not in mammalian organisms.(omitted)

  • PDF