• Title/Summary/Keyword: two phases model

Search Result 368, Processing Time 0.024 seconds

Tidal Computations For Inchon Bay

  • Choi, Byung Ho
    • 한국해양학회지
    • /
    • v.15 no.2
    • /
    • pp.112-122
    • /
    • 1980
  • A two-dimensional non-linear tidal model has been established to calculate the M$\_$2/ tide of Inchon Bay in the west coast of Korea. Cartesian coordinates are used for the derivation of the governing equations and account is taken of extensive drying boundaries (tidal flats) which are exposed at low tides. The tidal amplitudes and phases computed from the model agree well with those known from observation lying within bounds 5cm in amplitude and 5 in phase relative to the observed results. The work represents a further stage in the development including extensive sea measurements capable of application in various coastal engineering problems encountered in Inchon Bay area.

  • PDF

A Novel Optimization Procedure Utilizing the Conformal Transformation Method (등각사상법과 유한요소법을 이용한 2단계 최적설계법)

  • Im, Jee-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.7-12
    • /
    • 2001
  • A large number of methods for the design optimization have been proposed in recent years. However, it is not easy to apply these methods to practical use because of many iterations. So, in the design optimization, physical and engineering investigation of the given model are very important, which results in an overall increase in the optimization speed. This paper describes a novel optimization procedure utilizing the conformal transformation method. This approach consists of two phases and has the advantage of grasping the physical phenomena of the model easily. Some numerical results that demonstrate the validity of the proposed method are also presented.

  • PDF

DEA with Interval Efficiency Values

  • MAEDA, Yutaka;ENTANI, Tomoe;TANAKA, Hideo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.69-74
    • /
    • 1998
  • In this paper, we formulate the DEA model with interval efficiency, there exist two phases of efficiency evaluation with respect to the upper limit and the lower limit. From these viewpoints, we can define two extreme points of efficiency. As a result, an interval efficiency for each DMU cam be obtained. We also formulate the interval cross-efficiency.

  • PDF

Modeling the human memory in nerve fields

  • Fujita, Osamu;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.70-73
    • /
    • 1992
  • This paper describes the modeling of human memory using a nerve field model which is proposed for modeling the mechanism of brain mathematically. In our model, two phases of memory, retention and recollection, are focused on. The former consists of two stages, short-term memory (STM) and long-term memory (LTM). The proposed model consists of three parts, the STM Layer, LTM Layer and the Intermediate Layer between them. Each of these is constructed by a nerve field. In the STM Layer, memorized information is retained dynamically in the form of the reverberating states of units within the layer, while in the LTM Layer, it is stored statically in the form of structures of the weight on the links between units. the Intermediate Layer is introduced to translate this dynamic representation in the STM Layer to the LTNI Layer, and also to extract the static information from the STM Layer. In addition to this, we consider the recollection of information stored in the LTM. Finally, the behavior of this model is demonstrated by computer simulation.

  • PDF

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

Elasto-Plastic Finite Element Analysis in Consideration of Phase Transformations (상변태를 고려한 탄소성 유한요소 해석)

  • Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.334-336
    • /
    • 2009
  • An elastic-plasticity model during the austenitic decomposition was derived and implemented to incorporate the two important deformation behaviors observed during the phase transformations: the volumetric strain and transformation induced plasticity due to the temperature change and phase transformation. To obtain transformed phase volume fractions during cooling, the fourth order Runge-Kutta method was used to solve the Kirkaldy's phase kinetics model which is function of temperature, austenitic grain size and chemical composition. The volumetric strain was calculated by considering the densities of constituent phases, while the transformation induced plasticity was based on the micro-plasticity due to the volume mismatch between soft austenitic phase and other harder phases. The constitutive equations were implemented into the implicit finite element software and a simple boundary value problem was chosen as a model problem to validate the effect of transformation plasticity on the deformation behavior of steel under cooling from high temperature. It was preliminary concluded that the transformation plasticity plays a critical role in relaxing the developed stress during forming and thus reducing the magnitude of springback.

  • PDF

The Development of an ADDIE Based Instructional Model for ELT in Early Childhood Education

  • MARIAM, Nuzhat;NAM, Chang-woo
    • Educational Technology International
    • /
    • v.20 no.1
    • /
    • pp.25-55
    • /
    • 2019
  • The core purpose of the study is to develop and validate an ADDIE model based instructional model for English Language Teaching (ELT) in early childhood classroom in Bangladesh as an aid to teachers to reconstruct their knowledge and experience more strategically, and for them to design and implement their instruction more structurally. This study is developmental in nature which has been divided in five phases as follows. Phase I: Existing methods and instructional strategy review, Phase II: Instructional model development, Phase III: Delphi 1st round, Phase IV: Delphi 2nd round and Phase V: Model validation. After reviewing relevant literature and existing strategy in phase I, the 1st version of instructional model is made phase II. Next in phase III and phase IV, two rounds of Delphi have been conducted where experts related to different concerning areas of this study reviewed the 1st version and gradually the final version of the instructional model is made. Finally, the instructional model for English teachers of early childhood classroom in Bangladesh got validated by the same Delphi panelists in Phase V. In respect with each phases of ADDIE, the instructional model elaborates the 1) representative key points, 2) instructors' activities prescribed for the instructors, 3) supporting strategies. Both the conceptual and procedural models are included in this study for clearer identification of the whole process. Lastly the study provides some recommendations for instructors and practitioners on choosing the instructional model like doing prior need analysis, incorporating teacher training programs, training students, keeping on researching for finding effective teaching technique and tools and being open to changes etc. In addition, the study also acknowledges its limitations like not being able to consider the psychological factors due to time limitation. Finally, at the end the study points out the areas that welcome further research.

Effect of the Hydraulic Boundary Layer on the Convective Heat Transfer in Porous Media (유동 경계층이 다공성물질내 대류 열전달에 미치는 영향)

  • Jin, Jae-Seek;Lee, Dae-Young;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1119-1127
    • /
    • 2000
  • Convective heat transfer in a channel filled with porous media has been analyzed in this paper. The two-equation model is applied for the heat transfer analysis with the velocity profile, considering both the inertia and viscous effects. Based on a theoretical solution, the effect of the velocity profile on the convective heat transfer is investigated in detail. The Nusselt number is obtained in terms of the relevant physical parameters, such as the Biot number for the internal heat exchange, the ratio of effective conductivities between the fluid and solid phases, and hydraulic boundary layer thickness. The results indicate that the influence of the velocity profile is characterized within two regimes according to the two parameters, the Biot number and the conductivity ratio between the phases. The decrease in the heat transfer due to the hydraulic boundary layer thickness is 15% at most within a practical range of the pertinent parameters.

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

An Evaluation of Software Quality Using Phase-based Defect Profile (단계기반 결점 프로파일을 이용한 소프트웨어 품질 평가)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.313-320
    • /
    • 2008
  • A typical software development life cycle consists of a series of phases, each of which has some ability to insert and detect defects. To achieve desired quality, we should progress the defect removal with the all phases of the software development. The well-known model of phase-based defect profile is Gaffney model. This model assumes that the defect removal profile follows Rayleigh curve and uses the parameters as the phase index number. However, these is a problem that the location parameter cannot present the peak point of removed defects when you apply Gaffney model to the actual situation. Therefore, Gaffney model failed to represent the actual defect profile. This paper suggests two different models: One is modified Gaffney model that introduce the parameter of Putnam's SLIM model to replace of the location parameter, the other is the growth function model because the cumulative defect profile shows S-shaped. Suggested model is analyzed and verified by the defect profile sets that are obtained from 5 different software projects. We could see from the experiment, the suggested model performed better result than Gaffney model.