Z| 2001.7.10-11
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Utilizing the Conformal Transformation Method
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Abstract A large number of methods for the
design optimization have been proposed in recent
years. However, it is not easy to apply these methods
to practical use because of many iterations. So, in the
design  optimization, physical and engineering
investigation of the given model are very important,
which results in an overall increase in the
optimization speed.

This paper describes a novel optimization
procedure utilizing the conformal transformation
method. This approach consists of two phases and
has the advantage of grasping the physical
phenomena of the model easily. Some numerical
results that demonstrate the validity of the proposed
method are also presented.

1. INTRODUCTION

Electrical machinery makes use of the
electromagnetic phenomena. So, to get hold of its
characteristics, we analyze an electromagnetic field by
the numerical analysis methods. In recent years, the
application of optimization methods coupled with
magnetic field analysis is receiving ever increasing
attention, and a large number and variety of methods
have been proposed [1]-[5]. These methods, however,
are not always easy to be applied to practical use
because of many iterations and a relatively large
amount of CPU-time.

In this paper, with this background, we propose a
novel optimization approach, which consists of two
phases and perforrm an optimization procedure by
combining magnetic field analysis with optimization
methods. First, we apply the 2D theoretical analysis
to electromagnetic field calculations and determine the
shape of the investigated model broadly. The reason
for the adoption of the theoretical method in the first
phase is that we can grasp easily the physical
phenomena of the subject thus examines the later
developments. Next, we regard the shape obtained in
the first phase as the initial one and perform the
optimal design in more detaill by the numerical
analysis.

To show the wvalidity and advantage of the
proposed approach, we investigate an example whose
goal is to make the magnetic flux density uniform on
an observation line. This model is composed of a pair
of ferrite cores and exciting coils. As the first phase,
assuming the ferrite cores have the permeability of
infinity, we apply the conformal transformation
method as the theoretical analysis and calculate the
magnetic flux density analytically [6]. By this method,

we alter the shape of the ferrite cores to make the
magnetic flux density uniform in the air-gap. As the
second phase, we perform the optimal design in more
detail by combining the finite element method (FEM)
with the Simulated Annealing method (SA) subject to
the ferrite cores with non-linear permeability [7]-[8].
This approach results in an overall increase in the
speed of optimization.

2. INVESTIGATED MODEL

Figure 1(a) shows the investigated model. This
model is composed of a pair of ferrite cores and
exciting coils surrounding iron cores with the
permeability of infinity. Utilizing the symmetry, we
analyze the quadrant of the model as shown in Fig.
1(b).
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Fig. 1. Investigated Model
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Fig. 2. B-H Characteristic Curve of the Material

The ferrite cores have the permeability of
non-linear (carbon steels S45C) and are energized by
direct current of 45x10° [AT]. The B-H
characteristic curve of the material is shown in Fig.
2. The design variables are the air-gap length P~@Q
and the goal of the optimization is to make the
magnetic flux density B,=1.0 [T] on the line

Q1~ Q3

3. APPLICATION OF THE CONFORMAL
TRANSFORMATION METHOD

As the first phase of our optimizing process, we
apply the conformal transformation method to the
investigated 1<, In order to make use of this
method, we consider the surface of a pair of ferrite
cores to be composed of planes whose normal
direction is parallel and vertical to the x-axis as
shown in Fig. 3. When we assume a pair of ferrite
cores have the permeability of infinity, the magnetic
field intensity at the X p on the x-axis, which the

point we are interested in, is influenced by planes
whose normal direction is vertical (D) and parallel
(@) to the x-axis. Therefore, we investigate each
effect (O ,@) by using the conformal transformation
method.

3. 1 The Influence of the Plan whose Normal
Direction is Vertical to the X-axis
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Fig. 3. Plans whose Normal Direction is Parallel and
Vertical to the X-axis
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Fig. 4. Two Semi-infinite Ferrite Plates

Here, we consider two semi-infinite ferrite plates
which are space 2g apart, and the magnitude of the
magnetic scalar potential on the y-axis is ¥, as
shown in Fig. 4. First we begin our study by
considering the properties of a regular function of the

type,
z=Aw)=x(u, v)+iv(wu,v) o))

which defines a complex variable z=x+ iy as some

function of another complex variable w= u+ . The
magnetic scalar potential at any point is divided from
the imaginary part, v of (2).

z=qa sintfu+ ibv) (2)

where, ¢= g and b=—g" é-

Expanding (2) and so we have

x=a sinh(bu)cos (bv)
y=a cosh (bu)sin (bv) (3)

Squaring and adding these equations eliminates v to
give,

2

( asirfhbu)2+ (%;VhTu) =1 @

and squaring and substituting them eliminates 1z, so
that

(om )2— (2w )2=1 (5)
asin by acos by

Any straight line parallel to the wv—axis has the
equation %= constant. For a constant value of %,
(4) represents an ellipse in the z—plan, so that any
straight line parallel to the »—axis is transformed by
the equation z=a sinh(bw) into an ellipse in the
z—plan. Any straight line parallel to the #u—axis
has the equation v= constant, and form (5) it is
seen that such a line is transformed into a hyperbola

in the z—plan. This fact shows in Fig. 5. To express
the aspect as shown in Fig. 4, it necessary to



satisfy Fig. 4. Two Semi-infinite Ferrite Plates the
following conditions from (5).

a sinbv — a
a cosbv —

From above condition, we obtain the following
solution.

bv==*% (6)

voly

As. the field in Fig. 4 is symmetrical with the x—
axis, we show the upper aspect of one half as shown
in Fig. 6 (a). We calculate the magnetic field intensity
on the x—axis. From (3), we have

dx= ab cosh (bu)cos (bv)du
— ab sinh (bw)sin (bv)dv

dy= ab sinh (bw)sin (bv)du

(7)
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By substituting bv=—g into (3), (7), we obtain the

characteristics on the x—axis as follows:
v=o0 (8)

dv

v _ 1
dy ~ abcosh (bw) ©)

1

abcosh (bu) (10)

u _
ox

where (9) represents the derivative of the magnetic
scalar potential v with respect to y and is equal to
the negative of magnetic field intensity, (10).
Naturally, the following expression is held.

dv

3y (11

QD
i3

Referring to (9) and (10), cosh(bx) can be written
as follows.

cosh (b) =V 1+ sinh *(bw)

=1+ (£) =L T

Therefore, the magnetic field intensity on the x—

12)

axis, H, is obtained as follows.
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When the ferrite plate is located as shown in Fig. 6
(b), (13) can be written as follows.

13

2 Vo
T \/ gi+ (xo— xp)°

H,=- (14)

Now. we take infinitesimal length of the ferrite plate
and consider its on the xp as shown in Fig. 7.
Hence, (14) can be expressed as follows.
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Fig. 8. Infinitesimal Part over the Interval [ x,, %]
Then as shown in Fig. 8, when the infinitesimal part

is arranged over the interval [ xg, x;], the
magnetic field intensity is calculated as follows.

#e= [

2w,
—- 2=

X1~ Xp

+— (16)
{g2+ (x,— xP)Z} ?

'

X9~ Xp

T
{ gi+ (xo— xp)z} :

3. 2 The Influence of the Plan whose Normal
Direction is parallel to the X-axis

Now, we consider the transformation,

z=aw+ce™+¢ an
where a= gm, b= gm and c=—§.
Expanding (17) and so we have
x=au+ce™cos(bv) +c (18)
y=av+ c € ™sin (b) (19)

According with the previous study, we take the
upper aspect of one half. Next, we calculate the
magnetic field intensity on the x—axis. From (18)
and (19), we have

dx={a+ bc €™ cos (b)}du— bc & ™ sin (bv)dv
dy=>bc e "sin(bv)du+{a+ bc e *cos (bv))dv (20

By substituting y=0 into (18), (19) and (20), we
obtain the characteristics on the x—axis as follows:

v=0 (21)

(22)

(23

As stated above, the following expression is held
naturally from (22) and (23).

Ov.

_ Ou
oy = ox (24)

<

Therefore, the magnetic field intensity H, on the
x—axis is obtained as follows.

H,= (Ty)z_ g l+e&™ @)
where
e £ 5(2_2_‘) (26)

Now, we take infinitesimal length of the ferrite
plate and consider its influence on the xp as shown
in Fig. 9. Hence, (25) can be expressed as follows.

of 2w
- aHy — wm 1+ 6bu
ox g ou

27

v, c ('ZL ""’l)
2

£ {1+ 6(%“—1}}

Then, as shown in Fig. 10, when the infinitesimal
part is arranged over the interval [ gg, £1], the
magnetic field intensity is calculated as follows.

Hep, = f:;l(—

Y,me (—21‘—( " xO)_l)
m

(%(n—n)—l)}:}( g go)
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o
(28)
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Therefore, the total magnetic field intensity at the
x p is obtained from (16) and (28) as follows’

Hp=2H p+ 2. H », (29)
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Fig. 9. Infinitesimal Length at (0, g)
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The proposed optimization approach consists of two
phases. The first phase is to set up a broadly optimal
shape by the conformal transformation method. In this
paper we deal with only a simple application, ie. the
salient magnet pole. However, it is applicable to a
more complex application that is already developed by
a ordinary text book [6]. For example, we can treat
the slots and teeth configuration in electrical machine.

4. NUMERICAL EXAMPLE

The proposed optimization approach consists of two
phases. The first phase is to set up a broadly optimal
shape by the conformal transformation method. In this
paper we deal with only a simple application, ie. the
salient magnet pole. However, it is applicable to a
more complex application that is already developed by
a ordinary text book [6]. For example, we can treat
the slots and teeth configuration in electrical machine.
The proposed optimization approach is verified by a
concrete numerical example (Fig. 1). To make the
magnetic flux density on the line &~ @3 equal to
10[T], we alter the shape of the ferrite core
( Py~ P3) by the proposed approach, which consists
of two phases.

First, assuming the permeability of infinity, we
utilize the conformal transformation method as the
theoretical analysis and calculate the magnetic flux
density by applying (29). By using the simplest
algorithm, we determine the proper initial shape. At
each iteration we modify only one of the design
variables by the constant step-size so as to decrease
the maximum error value

|B—1.0l max © [B—1.0| yax decreases with an
increase in iteration and the magnetic flux density is
converged to the target value with less than 3
percent. As the result of the first phase, the shape
obtained is shown in Fig. 11. From the physical point
of view, it is obvious the optimal shape is monotone
decreasing with respect to the x—axis and this
corresponds  with the result by the conformal
transformation method.

Next, making use of the above result, we determine
the optimal design in more detail by combining the
FEM with the SA under the condition that the ferrite
cores have the permeability of non-linear. The
numbers of nodes and elements are 1132 and 2128
respectively. The seven design variables which
represent the air-gap length P~ are shown in Fig.
12. As the result of the second phase, Fig. 13 and
Fig. 14 show the optimal shape and the magnetic flux

density on the line @;~ @, The magnetic flux

density of this approach is converged to the target
value with less than 2 percent.

To confirm the validity and advantage of the
proposed approach, we have analyzed this model by
applving the conventional approach which does not
utilize the first phase. By this approach, we obtain the
optimal shape and the magnetic flux density as shown
in Fig. 15 and Fig. 16 respectively. The magnetic flux
density of the conventional approach is converged to

" the target value with less than 3 percent. However, to

achieve the optimal shape, this approach needs about
8800 iterations whereas the proposed approach about
2000 iterations. These results are summarized in
Table 1. Furthermore, as the conventional method
does not grasp physical phenomena, the shape
obtained is hard to manufacture. Therefore, we show
the validity and advantage of the proposed approach.
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Fig. 14. The Magnetic Flux Density
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Table 1. CPU-time and Iteration

Conventional Proposed
Approach Approach
CPU-time 100 914
(%] ’
Iteration 8800 2000

5. CONCLUSION

In this paper, we propose a novel optimization
procedure which consists of two phases for the
purpose of increasing the overall optimization speed.
This approach, in which the conformal transformation

method is utilized in the first phase, has the
advantage of grasping physical phenomena of the
model and determining the proper initial shape. As
the second phase, we regard the shape obtained in
the first phase as the initial one and perform the
optimal design in more detail by the numerical
analysis. To show the validity and advantage of this
method, a concrete numerical example is presented.
As a result, the optimal shape is obtained much
faster in the case of the conventional method.
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