• Title/Summary/Keyword: two arm manipulators

Search Result 20, Processing Time 0.025 seconds

Design of a Adaptive Controller of Industrial Robot with Eight Joint Based on Digital Signal Processor

  • Han, Sung-Hyun;Jung, Dong-Yean;Kim, Hong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.741-746
    • /
    • 2004
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Position-Based Force Control Application of a Mobile Robot with Two Arms (두 팔이 달린 이동 로봇의 위치기반 힘 제어응용)

  • Ahn, Jae Kook;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.315-321
    • /
    • 2013
  • This paper presents the position-based force control application of a mobile manipulator. The mobile manipulator consists of two six DOF manipulators and a mobile robot. Kinematics of the robot is analyzed and simulated to validate the analysis. A position-based force control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of force control applications of robot arm and interaction with a human operator are conducted. Experimental results show that the robot arm is well regulated to follow the desired force.

Two-Degrees-Of-Freedom Internal Model Position Control for Slave Manipulator Teleoperated by Master Arm

  • Park, Byung-Suk;Kim, Dong-Gi;Jin, Jae-Hyun;Ahn, Sung-Ho;Song, Tae-Gil;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.5-108
    • /
    • 2002
  • Recently, the more advanced control technologies are required to deal with the fast and accurate motion in manipulators. For these requirements, many manipulator control methods have been developed such as a computed torque method. This paper proposes a design method, a two-degrees-of-freedom internal model control (TDOF IMC), of the manipulator position control based on combination of the one-degree-of-freedom internal model control (ODOF IMC) system and the disturbance observer. The proposed control scheme is implemented for the position control, which leads the slave manipulator to the desired location by the master arm. The experimental results are presented and discussed through the imp...

  • PDF

Dynamic Neurocontrol Architecture of Robot Manipulators (로보트 매니퓰레이터의 동력학적 신경제어 구조)

  • 문영주;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.15-23
    • /
    • 1992
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, two kinds of neurocontrol architectures for the dynamic control of robot manipulators are developed. One is based on a System Identification and Control scheme and the other is based on the Feedback-Error leaming scheme. Both of the proposed architectures use an inverse dynamic neurocontroller in parallel with a linear neurocontroller. The difference is that the first architecture uses the system identifier to get the signals used for training neurocontrollers, while the second architecture uses a properly defined energy function. Compared with the previous types of neurocontrollers which are using an inverse dynamic neurocontroller and a fixed PD gain controller, the proposed architectures not only eliminate the painful process of the fixed gain tuning but also exhibit superior peformances because the linear neurocontroller can adapt its gains according to the applied task. This superior performance is tested and verified through computer simulation of the dynamic control of the PUMA 560 arm.

  • PDF

A Fuzzy Robust Controller with Saturation for Robot Manipulators (로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis (협조로보트 시스템의 동적 Decoupling과 안정도연구)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF

Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network (학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어)

  • Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

Design, Implementation, and Control of Two Arms of a Service Robot for Floor Tasks (바닥작업이 가능한 양팔 서비스 로봇의 기구학 설계, 제작 및 제어)

  • Bae, Yeong Geol;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • This paper presents the implementation and control of two arms of an indoor service robot for floor tasks. The robot arms are designed to have 6 degrees-of-freedom (DOF), but actually built to have 5 DOF. Forward and inverse kinematics of two arms are analyzed and simulated to confirm the kinematic analysis. Two arms are actually controlled based on the inverse kinematics. The right and left arms are separately controlled to follow different trajectories in order to make sure the functionality of both arms. Experimental studies are conducted to confirm the kinematic analysis and proper operation of two arms.

The Development of a Remote User Interface for the Manipulator using the Ethernet (이더넷을 이용한 매니퓰레이터의 원격 유저 인터페이스 개발)

  • Lee, Jong-Soo;Ryoo, Sung-Yop;Lee, Ki-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.558-560
    • /
    • 1998
  • The operation of robot manipulators has a restriction that the operator must reside at the factory, where the manipulator is used. To overcome this restriction, we propose a remote control system using the internet, the system which runs on the Window 95 environment is composed of the remote client which transfers commands to the server which control and manage the manipulator in the factory. In the control of Hong-ik Direct Drive Arm, it is necessary to consider the complex nonlinear parameters causing the mutual interaction between joints, so we use two TMS320C31 DSP chips in the controller for the real time dynamic control algorithms. For the test of system integrity and the verification of the mathematical modeling, we apply CTM, PD and VSS control algorithms and the simulation results are satisfactory.

  • PDF

Optimization of Dual-arm Configurations for Efficient Handling of Objects (물체의 효율적인 이송을 위한 양팔 로봇의 최적 자세)

  • Park, Chi-Sung;Ha, Hyun-Uk;Son, Joon-Bae;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.130-140
    • /
    • 2011
  • This paper proposes an optimal posture for the task-oriented movement of dual arm manipulator. A stability criterion function which consists of three kinds of feature-representative parameters has been utilized to define the optimal posture. The first parameter is the force which is applied to the object. The torque of each joint and position of arm are attained from the current sensor and encoder, respectively. From these two data, the applied force to an object is estimated using sum of vectors of the joint torques estimated from the measured current. In order to investigate the robustness of each posture, the variation of the end-effector from the encoder information has been utilized as the second parameter. And for the last parameter for the optimality, the total energy consumption has been used. The total consuming energy of each posture can be computed from the current information and the battery voltage. The proposed robot structure consists of a mobile inverted pendulum and dual manipulators. In order to define the optimal posture for the each object, external disturbances are applied to the mobile inverted pendulum robot and the first and second parameters are investigated to find the optimal posture among the pre-selected most representative postures. Finally, the proposed optimal posture has been verified by the proposed stability criterion function which consists of total force to the object, the fluctuation of the end-effector position, and total energy consumption. The effectiveness of the proposed algorithms has been verified and demonstrated through the practical simulations and real experiments.