• 제목/요약/키워드: twin shield tunnel

검색결과 8건 처리시간 0.021초

Analysis of surface settlement troughs induced by twin shield tunnels in soil: A case study

  • Ahn, Chang-Yoon;Park, Duhee;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.325-336
    • /
    • 2022
  • This paper analyzes the ground surface settlements induced by side-by-side twin shield tunnels bored in sedimentary soils, which primarily consist of sand with clay strata above the tunnel crown. The measurements were obtained during the construction of twin tunnels underneath the Incheon International Airport (IIA) located in Korea. The measured surface settlement troughs are approximated with Gaussian functions. The trough width parameters i and K of the settlement troughs produced by the first and second tunnel passings are determined, along with those for the total settlement trough. The surface settlement troughs produced by the first shield passing are reasonably represented by a symmetric Gaussian curve. The surface settlement troughs induced by the second shield tunnel display marginal asymmetric shapes at selected sections. The total settlement troughs are fitted both with a shifted symmetric Gaussian function and the superposition method utilizing an asymmetric function for the incremental trough produced by the second tunnel. It is revealed that the superposition method does not always produce better fits with the total settlement. Instead, the shifted symmetric Gaussian function is overall demonstrated to provide more favorable agreements with the recordings. Therefore, the shifted symmetric Gaussian function is recommended to be used in the design for the prediction of the settlement in clays caused by twin tunneling considering the simplicity of the procedure compared with the superposition method. The amount of increase in the width parameter K for the twin tunnel relative to that for the single tunnel is quantified, which can be used for a preliminary estimate of the surface settlement in clay induced by twin shield tunnels.

Settlement behaviours and control measures of twin-tube curved buildings-crossing shield tunnel

  • Jianwei, Jia;Ruiqi, Gao;Defeng, Wang;Jianjun, Li;Ziwen, Song;Jinghui, Tan
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.699-706
    • /
    • 2022
  • Settlement control techniques are critical for the safety of shield tunnel constructions, especially for facing complex situations. In this study, the shield tunnel structure from Huaita east road station to Heping Road station in Xuzhou metro No.3 line (China) is taken as engineering background, which has various complex problems of the upper-soft and lower-hard composite stratum conditions, twin curve shield tunnels, and underpass the foundation of the piled raft. The deformation characteristics of shield tunnelling passing through buildings are explored. Subsequently, comprehensive research methods of numerical simulation and field measurement are adopted to analyzing the effectiveness of settlement control by using the top grouting technique. The results show that the settlement of the buildings has obvious spatial characteristics, and the hysteresis effect can be obviously observed in soil deformation caused by shield construction. Meanwhile, the two shield constructions can cause repeated disturbances, reducing the soil deformation's hysteresis effect. Moreover, the shield tunnel's differential settlement is too large when a single line passes through, and the shield construction of the outer curve can cause more significant disturbance in the tunnel than the inside curve. Notably, the proposed process control parameters and secondary topgrouting method can effectively control the deformation of the shield tunnel, especially for the long-term deformation.

점토지반 병설쉴드터널에서 후행터널 굴착에 의한 비대칭 침하형상 연구 (Study on Asymmetric Settlement Trough induced by the 2nd Tunneling of Twin Shield Tunnels in Clay)

  • 안창윤;박두희
    • 한국지반공학회논문집
    • /
    • 제37권10호
    • /
    • pp.55-63
    • /
    • 2021
  • 쉴드TBM의 제작기술 발전과 시공경험 축적으로, 쉴드터널은 전력, 통신 및 상하수도와 같은 소구경 터널에서 도로 및 철도와 같은 대구경 터널로 확대되고 있으며, 그에 따라 병설쉴드터널의 적용도 증가하고 있다. Peck(1969)에 의해 연약지반에서 단선쉴드터널의 지표침하형상이 Gaussian distribution으로 표현될 수 있음이 제시된 이후, 현장계측, 실내모형실험 및 수치해석 등의 방법을 통해 많은 연구에서 이의 적정성이 확인되었다. 본 연구는 현장 계측된 병설쉴드터널의 지표침하로부터 후행 터널(2nd tunnel)에 의한 추가 지표침하 형상을 표현하기 위해 침하형상의 좌·우측에 Gaussian curve를 각각 적용함으로써, 침하형상을 보다 정확히 표현할 수 있음을 알 수 있었다.

공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구 (Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport)

  • 안창윤;박두희
    • 한국터널지하공간학회 논문집
    • /
    • 제23권5호
    • /
    • pp.325-337
    • /
    • 2021
  • 도로와 철도터널에서는 비상시 대피를 위한 시설이 필수적이며, 제연 및 화재 진압을 위한 설비와 승객의 피난 통로가 그것이다. 장대 병설터널에서는 횡갱을 배치하여 화재 발생 반대편 터널로 대피하도록 계획된다. 병설 쉴드터널에서는 횡갱의 시공을 위해 기 시공된 본선터널의 영구 구조물인 세그먼트 라이닝을 철거하여 원지반을 노출하여야 한다. 현대의 대부분의 쉴드TBM이 막장을 격벽으로 차단한 폐쇄형 쉴드TBM임을 감안할 때, 원지반이 노출되는 횡갱의 시공은 쉴드터널의 시공단계에서 위험도가 높은 과정 중 하나이다. 특히, 지하수위 아래의 토사 쉴드터널의 횡갱 시공에서는 세그먼트 철거 및 굴착 중 토사지반의 안정성 확보를 위한 차수 및 굴착공법에 대한 면밀한 검토가 요구된다. 본 사례 연구에서는 토사지반에서 대구경 강관추진을 활용한 횡갱 굴착 공법의 시공 중 유의사항을 소개하고 시공 후 계측결과를 분석하였다. 본 사례 연구에서 소개되는 횡갱 굴착공법은 그라우팅으로 보강된 토사지반에 대구경 강관 추진 후 내부 굴착하는 공법으로써, 두 가지 메커니즘에 의해 토사지반에서 굴착 중 막장의 안정성을 확보한다. 첫 번째는 대구경 강관을 추진하여 막장 전방 토사지반의 전주면을 강관에 의해 선 지보 한다. 두 번째는 대구경 강관 추진으로 내부로 압입된 토사의 Plugging 효과에 의해 막장 전면의 지지효과를 얻을 수 있다. 추진력에 의한 강관의 변형 및 강관의 관통 완료 후 응력발생 계측결과로부터 대구경 강관 추진에 의한 횡갱 굴착공법이 토사지반에서 충분한 시공성과 안정성을 확보함을 확인하였다. 본 사례 연구의 토사 쉴드터널의 횡갱 시공공법은 유사한 현장조건에서 널리 활용될 수 있을 것으로 판단된다.

Determination of effective parameters on surface settlement during shield TBM

  • Kim, Dongku;Pham, Khanh;Park, Sangyeong;Oh, Ju-Young;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.153-164
    • /
    • 2020
  • Tunnel excavation in shallow soft ground conditions of urban areas experiences inevitable surface settlements that threaten the stability of nearby infrastructures. Surface settlements during shield TBM tunneling are related to a number of factors including geotechnical conditions, tunnel geometry and excavation methods. In this paper, a database collected from a construction section of Hong Kong subway was used to analyze the correlation of settlement-inducing factors and surface settlements monitored at different locations of a transverse trough. The Pearson correlation analysis result revealed a correlation between the factors in consideration. Factors such as the face pressure, advance speed, thrust force, cutter torque, twin tunnel distance and ground water level presented a modest correlation with the surface settlement, while no significant trends between the other factors and the surface settlements were observed. It can be concluded that an integrated effect of the settlement-inducing factors should be related to the magnitude of surface settlements.

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구 (A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds)

  • 유광호;정선태
    • 한국지반환경공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.29-40
    • /
    • 2019
  • 최근 터널 시공 시 여러 위험요인을 감안하여 보다 안전한 터널의 시공을 위하여 해상이나 하상 밑의 연약지반에서, 도심터널공사나 주요 구조물 하부 통과를 위해서 기계화 시공의 빈도가 높아지고 있다. 그러나 굴착으로 인한 지표면의 침하거동 산정이 어려워 간편하게 예측하는 식이 필요한 실정이다. 따라서 본 연구에서는 연약지반에 병렬로 터널이 시공되어지는 경우 침하거동에 대해 보다 간단한 식과 기존에 Peck(1969)이 제안한 이론을 근거로 연약지반 및 대구경 shield 터널에서 적용 가능한 수정식을 제안하고자 하였다. 이를 위해 최대 침하량, 지반조건에 따른 침하범위, 병렬시공에 따른 간섭 체적손실 등의 장기간의 계측값을 분석하였다. 그 결과 굴착면 상부가 퇴적점토인 연약지반에서 간편하게 최대 침하량을 산정할 수 있는 식을 제시하였는데, Peck(1969)의 식보다 국내 계측데이터에 더 적합한 것으로 나타났다.