Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.5.699

Settlement behaviours and control measures of twin-tube curved buildings-crossing shield tunnel  

Jianwei, Jia (China Construction Sixth Engineering Bureau Co. Ltd.)
Ruiqi, Gao (China Construction Sixth Engineering Bureau Co. Ltd.)
Defeng, Wang (Institute of Mining and Special Civil Engineering, Technical University of Freiberg)
Jianjun, Li (China Construction Sixth Engineering Bureau Co. Ltd.)
Ziwen, Song (China Construction Sixth Engineering Bureau Co. Ltd.)
Jinghui, Tan (China Construction Sixth Engineering Bureau Co. Ltd.)
Publication Information
Structural Engineering and Mechanics / v.84, no.5, 2022 , pp. 699-706 More about this Journal
Abstract
Settlement control techniques are critical for the safety of shield tunnel constructions, especially for facing complex situations. In this study, the shield tunnel structure from Huaita east road station to Heping Road station in Xuzhou metro No.3 line (China) is taken as engineering background, which has various complex problems of the upper-soft and lower-hard composite stratum conditions, twin curve shield tunnels, and underpass the foundation of the piled raft. The deformation characteristics of shield tunnelling passing through buildings are explored. Subsequently, comprehensive research methods of numerical simulation and field measurement are adopted to analyzing the effectiveness of settlement control by using the top grouting technique. The results show that the settlement of the buildings has obvious spatial characteristics, and the hysteresis effect can be obviously observed in soil deformation caused by shield construction. Meanwhile, the two shield constructions can cause repeated disturbances, reducing the soil deformation's hysteresis effect. Moreover, the shield tunnel's differential settlement is too large when a single line passes through, and the shield construction of the outer curve can cause more significant disturbance in the tunnel than the inside curve. Notably, the proposed process control parameters and secondary topgrouting method can effectively control the deformation of the shield tunnel, especially for the long-term deformation.
Keywords
complex strata; foundation deformation; secondary grouting; settlement control; shield tunnel;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Liu, T., Zhong, Y., Feng, Z., Xu, W., Song, F. and Li, C. (2020), "New construction technology of a shallow tunnel in bouldercobble mixed grounds", Adv. Civil Eng., 2020, Article ID 5686042. https://doi.org/10.1155/2020/5686042.   DOI
2 Liu, X., Fang, Q., Zhang, D. and Wang, Z. (2019), "Behaviour of existing tunnel due to new tunnel construction below", Comput. Geotech., 110, 71-81. https://doi.org/10.1016/j.compgeo.2019.02.013.   DOI
3 Lv, H., Cheng, Z. and Liu, F. (2021b), "Study on the mechanism of a new fully mechanical mining method for extremely thick coal seam", Int. J. Rock Mech. Min. Sci., 142, 104788. https://doi.org/10.1016/j.ijrmms.2021.104788.   DOI
4 Lv, H., Cheng, Z., Dong, Y., Zhang, J. and Ma, Y. (2021a), "Numerical simulation on the crack initiation and propagation of coal with combined defects", Struct. Eng. Mech., 79(2), 237-245. https://doi.org/10.12989/sem.2021.79.2.237.   DOI
5 Lv, H., Tang, Y., Zhang, L., Cheng, Z. and Zhang, Y. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.   DOI
6 Maynar, M.J. and Rodriguez, L.E. (2005), "Discrete numerical model for analysis of earth pressure balance tunnel excavation", J. Geotech. Geoenviron. Eng., 131(10), 1234-1242. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1234).   DOI
7 Li, X. and Chen, X. (2012), "Using grouting of shield tunneling to reduce settlements of overlying tunnels: Case study in Shenzhen metro construction", J. Constr. Eng. Manage., 138(4), 574-584.   DOI
8 Ling, X., Kong, X., Tang, L., Zhao, Y., Tang, W. and Zhang, Y. (2022), "Predicting earth pressure balance (EPB) shield tunneling-induced ground settlement in compound strata using random forest", Transp. Geotech., 35, 100771. https://doi.org/10.1016/j.trgeo.2022.100771.   DOI
9 Liu, F., Guo, Z., Lv, H. and Cheng, Z. (2018), "Test and analysis of blast wave in mortar test block", Int. J. Rock Mech. Min. Sci., 108, 80-85. https://doi.org/10.1016/j.ijrmms.2018.06.003.   DOI
10 Peila, D., Oggeri, C. and Borio, L. (2009), "Using the slump test to assess the behavior of conditioned soil for EPB tunnelling", Environ. Eng. Geosci., 15(3), 167-174. https://doi.org/10.2113/gseegeosci.15.3.167.   DOI
11 Peila, D., Oggeri, C. and Vinai, R. (2007), "Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations", J. Geotech. Geoenviron. Eng., 133(12), 1622-1625. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1622).   DOI
12 Shahmoradi, J., Salari Rad, H. and Roghanchi, P. (2020), "Face stability analysis for the earth pressure balance method in nonhomogeneous inclined soil layers: Case study", Int. J. Geomech., 20(10), 05020005. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001833.   DOI
13 Suwansawat, S. and Einstein, H.H. (2006), "Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunnelling", Tunnel. Undergr. Space Technol., 21(2), 133-150. https://doi.org/10.1016/j.tust.2005.06.007.   DOI
14 Talebi, K., Memarian, H., Rostami, J. and Gharahbagh, E.A. (2015), "Modeling of soil movement in the screw conveyor of the earth pressure balance machines (EPBM) using computational fluid dynamics", Tunnel. Undergr. Space Technol., 47, 136-142. https://doi.org/10.1016/j.tust.2014.12.008.   DOI
15 Vinai, R., Oggeri, C. and Peila, D. (2008), "Soil conditioning of sand for EPB applications: A laboratory research", Tunnel. Undergr. Space Technol., 23(3), 308-317. https://doi.org/10.1016/j.tust.2007.04.010.   DOI
16 Wang, Z., Zhang, K.W., Wei, G., Li, B., Li, Q. and Yao, W.J. (2018), "Field measurement analysis of the influence of double shield tunnel construction on reinforced bridge", Tunnel. Undergr. Space Technol., 81, 252-264. https://doi.org/10.1016/j.tust.2018.06.018.   DOI
17 Xie, X., Wang, Q., Shahrour, I., Li, J. and Zhou, B. (2018), "A real-time interaction platform for settlement control during shield tunnelling construction", Autom. Constr., 94, 154-167. https://doi.org/10.1016/j.autcon.2018.06.012.   DOI
18 Wei, H., Nian, M. and Li, L. (2020a), "China's strategies and policies for regional development during the period of the 14th Five-Year Plan", Chin. J. Urban Environ. Stud., 8(02), 2050008. https://doi.org/10.1142/S2345748120500086.   DOI
19 Wei, Y., Guo, W. and Zhang, Q. (2020b), "A model for predicting evaporation from fresh concrete surface during the plastic stage", Drying Technology, 38(16), 2231-2241.   DOI
20 Wei, Y., Yang, Y., Tao, M., Wang, D. and Jie, Y. (2020c), "Earth pressure balance shield tunneling in sandy gravel deposits: a case study of application of soil conditioning", Bull. Eng. Geology Environ., 79(9), 5013-5030. https://doi.org/10.1007/s10064-020-01856-1.   DOI
21 Xiong, Y., Kong, D., Cheng, Z., Wu, G. and Zhang, Q. (2021), "The comprehensive identification of roof risk in a fully mechanized working face using the cloud model", Math., 9(17), 2072. https://doi.org/10.3390/math9172072.   DOI
22 Yan, Q., Li, B., Deng, Z. and Li, B. (2018), "Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train", Struct. Eng. Mech., 65(6), 741-750. https://doi.org/10.12989/sem.2018.65.6.741.   DOI
23 Ye, X.W., Jin, T. and Chen, Y.M. (2022), "Machine learning-based forecasting of soil settlement induced by shield tunneling construction", Tunnel. Undergr. Space Technol., 124, 104452. https://doi.org/10.1016/j.tust.2022.104452.   DOI
24 Zakhem, A.M. and El Naggar, H. (2019), "Effect of the constitutive material model employed on predictions of the behaviour of earth pressure balance (EPB) shield-driven tunnels", Transp. Geotech., 21, 100264. https://doi.org/10.1016/j.trgeo.2019.100264.   DOI
25 Zhu, C. (2017), "Control of surface settlement by considering shield tunneling technology", KSCE J. Civil Eng., 21(7), 2896-2907. https://doi.org/10.1007/s12205-017-0761-0.   DOI
26 Zhang, Y., Cheng, Z. and Lv, H. (2019), "Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions", Geomech. Eng., 18(1), 97-109. https://doi.org/10.12989/gae.2019.18.1.097.   DOI
27 Zhao, H., Liu, X. and Yuan, Y. (2022), "Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels", Struct. Eng. Mech., 81(4), 513-522. https://doi.org/10.12989/sem.2022.81.4.513.   DOI
28 Zhao, H., Liu, X., Bao, Y. and Yuan, Y. (2017), "Nonlinear simulation of tunnel linings with a simplified numerical modelling", Struct. Eng. Mech., 61(5), 593-603. https://doi.org/10.12989/sem.2017.61.5.593.   DOI
29 Bai, Y., Yang, Z. and Jiang, Z. (2014), "Key protection techniques adopted and analysis of influence on adjacent buildings due to the Bund Tunnel construction", Tunnel. Undergr. Space Technol., 41, 24-34. https://doi.org/10.1016/j.tust.2013.11.005.   DOI
30 Chen, R.P., Zhang, P., Kang, X., Zhong, Z.Q., Liu, Y. and Wu, H.N. (2019), "Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods", Soil. Found., 59(2), 284-295. https://doi.org/10.1016/j.sandf.2018.11.005.   DOI
31 Cheng, W.C., Song, Z.P., Tian, W. and Wang, Z.F. (2018), "Shield tunnel uplift and deformation characterisation: a case study from Zhengzhou metro", Tunnel. Undergr. Space Technol., 79, 83-95. https://doi.org/10.1016/j.tust.2018.05.002.   DOI
32 Cheng, Z. and Geng, X. (2021), "Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay", Geomech. Eng., 27(2), 103-113. https://doi.org/10.12989/gae.2021.27.2.103.   DOI
33 Ding, W.Q., Peng, Y.C., Yan, Z.G., Shen, B.W., Zhu, H.H. and Wei, X.X. (2013), "Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints", Struct. Eng. Mech., 45(3), 337-354. https://doi.org/10.12989/sem.2013.45.3.337.   DOI
34 Cheng, Z., Li, L. and Zhang, Y. (2020), "Laboratory investigation of the mechanical properties of coal-rock combined body", Bull. Eng. Geol. Environ., 79, 1947-1958. https://doi.org/10.1007/s10064-019-01613-z.   DOI
35 Cheng, Z., Pan, W., Li, X. and Sun, W. (2019a), "Numerical simulation on strata behaviours of TCCWF influenced by coalrock combined body", Geomech. Eng., 19(3), 269-282. https://doi.org/10.12989/gae.2019.19.3.269.   DOI
36 Cheng, Z., Yang, S., Li, L. and Zhang, L. (2019b), "Support working resistance determined on top-coal caving face based on coal-rock combined body", Geomech. Eng., 19(3), 255-268. https://doi.org/10.12989/gae.2019.19.3.255.   DOI
37 Fang, Y., Cui, J., Wanatowski, D., Nikitas, N., Yuan, R. and He, Y. (2022), "Subsurface settlements of shield tunneling predicted by 2D and 3D constitutive models considering non-coaxiality and soil anisotropy: A case study", Can. Geotech. J., 59(3), 424-440. https://doi.org/10.1139/cgj-2020-0620.   DOI
38 Fu, J., Yang, J., Zhu, S. and Shi, Y. (2017), "Performance of jetgrouted partition walls in mitigating the effects of shield-tunnel construction on adjacent piled structures", J. Perform. Constr. Facil., 31(2), 04016096.
39 Goh, A.T.C., Zhang, W., Zhang, Y., Xiao, Y. and Xiang, Y. (2018), "Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77(2), 489-500. https://doi.org/10.1007/s10064-016-0937-8.   DOI
40 Hu, X., He, C., Peng, Z. and Yang, W. (2019), "Analysis of ground settlement induced by Earth pressure balance shield tunneling in sandy soils with different water contents", Sustain. Citi. Soc., 45, 296-306. https://doi.org/10.1016/j.scs.2018.10.038.   DOI
41 Kannangara, K.P.M., Zhou, W., Ding, Z. and Hong, Z. (2022), "Investigation of feature contribution to shield tunnelinginduced settlement using Shapley additive explanations method", J. Rock Mech. Geotech. Eng., 14(4), 1052-1063. https://doi.org/10.1016/j.jrmge.2022.01.002.   DOI
42 Kong, D., Cheng, Z. and Zheng, S. (2019), "Study on the failure mechanism and stability control measures in a large-cuttingheight coal mining face with a deep-buried seam", Bull. Eng. Geol. Environ., 78(8), 6143-6157. https://doi.org/10.1007/s10064-019-01523-0.   DOI
43 Kong, D., Xiong, Y., Cheng, Z., Wang, N., Wu, G. and Liu, Y. (2021), "Stability analysis of coal face based on coal facesupport-roof system in steeply inclined coal seam", Geomech. Eng., 25(3), 233-243. https://doi.org/10.12989/gae.2021.25.3.233.   DOI
44 Lai, H., Zheng, H., Chen, R., Kang, Z. and Liu, Y. (2020), "Settlement behaviors of existing tunnel caused by obliquely under-crossing shield tunneling in close proximity with small intersection angle", Tunnel. Undergr. Space Technol., 97, 103258. https://doi.org/10.1016/j.tust.2019.103258.   DOI
45 Li, P., Chen, K., Wang, F. and Li, Z. (2019), "An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face", Tunnel. Undergr. Space Technol., 91, 102989. https://doi.org/10.1016/j.tust.2019.05.019.   DOI
46 Li, P., Lu, Y., Lai, J., Liu, H. and Wang, K. (2020), "A comparative study of protective schemes for shield tunneling adjacent to pile groups", Adv. Civil Eng., 2020, Article ID 6964314. https://doi.org/10.1155/2020/6964314.   DOI