• Title/Summary/Keyword: turn signal operation

Search Result 60, Processing Time 0.029 seconds

Right-Turn Traffic Operation at Signalized Intersections (신호교차로에서 우회전교통류 운영방안)

  • KIM, Youngchan;KWON, Minyoung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.79-89
    • /
    • 2017
  • The purpose of this study is to analyze the current right-turn operation at signalized intersections and suggest appropriate right-turn operation strategy. From field investigation, right-turn signals have not only operated various type and shape, lacking of consistency, but also there was no clear regulations or standards. It could increase drivers' confusion and cause vehicle-to-pedestrian accidents. In order to improve pedestrian safety, there is urgent need to study the regulations and standards regarding to right-turn traffic control. This study suggests appropriate right-turn signal operation strategy. In case of permissive right-turn operation, it should be stated on regulations that red light means right-turn vehicles must stop temporarily at the stop line and then turn right. Necessary conditions for installing right-turn signal for protected operation are that there should have one or more exclusive right-turn lanes and right-turn signal face should contain the lenses with three-color arrow indication. In addition, we assort right-turn operation types as permissive, protected and protected/permissive right-turn and suggest specific signal operation strategy by the types.

Fundamental Research on Developing Additional Information System by Connecting Route Guidance Information with Turn Signal Operation (경로유도정보와 방향지시등을 연동한 추가정보 제공 시스템 개발의 기초 연구)

  • Jeon, Yong-Wook;Daimon, Tatsuru
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-71
    • /
    • 2009
  • A car navigation system as an in-vehicle route guidance information (RGI) offers a state-of-the-art technological solution to driver navigation in an unfamiliar area. However, the RGI is provided by some pre-determined options in terms of the interface between a driver and a car navigation system. Drivers occasionally pass the target intersection owing to non- or late- recognizing it. This paper is examined the position of driver's turn signal operation and intersection recognition approaching at the target intersection which is difficult to identify, as a fundamental research on developing the additional RGI connecting with the turn signal control. The field experiment was conducted to measure distances of the turn signal operation and the intersection recognition from the target intersection according to left turns, right turns, and landmarks at adjacent intersection. And glance behavior to the car navigation display was evaluated by using an eye camera. The results of the field study indicate that, most case of driving, drivers operate the turn signal until 40m to 50m before coming to the target intersection. The driving simulator experiment was performed to examine the effectiveness of providing the additional RGI when drivers did not operate the turn signal approaching at the target intersection based on the results of the field study. To provide the additional RGI is effective for the intersection identification and recognition, and expected to improve the traffic safety and the comfort for drivers.

Position of Intersection Recognition and Tum Signal Operation Approaching at Target Intersection (교차로 인지와 방향지시등 조작 지점에 관한 검토)

  • Jeon, Yong-Wook;Tatsmu, Daimon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.65-70
    • /
    • 2009
  • In-vehicle route guidance information(RGI) systems have been developed with the advancement of the information and communication technologies. However, the RGI is provided by a pre-determined option, drivers occasionally pass the target intersection owing to non- or late- recognizing it. The purpose of this experiment is to examine the position of driver's tum signal operation and intersection recognition approaching at the target intersection which is difficult to identify as a preliminary research on developing the additional RGI connecting with the tum signal control. The field experiment was conducted to measure distances of the turn signal operation and intersection recognition from the target intersection according to driving lanes and landmarks at adjacent intersection. And, glance behavior to the car navigation display was evaluated by using an eye camera. The results indicate that drivers operate the turn signal after confirming a landmark in the case of the intersection with it. However, most case of driving, drivers operate the tum signal at 40 to 50m before coming to the target. To provide the additional RGI, when drivers do not operate the tum signal approaching at the target intersection based on the results, is expected to improve the traffic safety and the comfort for drivers.

Assessment of Improved Transportation Operating Systems in Changwon City (창원시 교통운영체계 개선 효과평가 연구)

  • Hong, Soon-Jin;Jeong, Jun-Ha;Hwang, Sang-Ho;Ko, Myoung-Soo;Lee, Sang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.127-136
    • /
    • 2013
  • In order to improve the safety and efficiency of traffic signal operation, several core projects of advanced transportation operating systems were implemented in Changwon City. This project included 10 units such as the expansion of roundabout, the permitted left-turn signal operation and the effectiveness of the projects was assessed using before and after studies. This paper presented the quantitative and qualitative evaluation results for three projects: roundabout, permitted left-turn signal operation, and left-turn actuated signal operation. From the analysis results, average travel speed was improved by 16.8% from the installation of roundabouts and average travel time and control delay were reduced by 12.4% and 41.6% respectively, from permitted left-turn operation. It was found that average control delay was reduced about 26.7% from left-turn actuated signal operation. In addition, more than 57.7% of the surveyed people was satisfied with the operational performance of the roundabout implemented. It is expected that the operational performance of traffic signal can be greatly improved by incorporating the proper projects of advanced transportation operating systems in other cities.

A Study on Low-Current-Operation of 850nm Oxide VCSELs Using a Large-Signal Circuit Model (대신호 등가회로 모델을 이용한 850nm Oxide VCSEL의 저전류 동작 특성 연구)

  • Jang, Min-Woo;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.10-21
    • /
    • 2006
  • We have studied the characteristics of oxide VCSELS when their off-current and on-current are kept small in order to find out the possibility of low current operation. A large signal equivalent circuit model has been used. By comparing measured data and simulation results, the parameters of the large signal models are obtained including the capacitances. Using the large signal model, we have investigated the effects of capacitance and on/off currents upon the turn-on/turn-off characteristics and eye diagram. According to the experiment and simulation, the depletion capacitance, which has been neglected, is found to have significant influence on the him-on delay and eye-diagram. Therefore, for high speed and low current operation, the reduction of the depletion capacitance is essential.

Development of Traffic Signal Operation Strategies On Median Bus Lane (중앙버스전용차로제 실시에 따른 신호운영 방안 연구)

  • Kim Gyun-Jo;Kim Young-Chan;Kim Jin-Tae;Jung Kwang-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.21-30
    • /
    • 2006
  • For urban highway network, traffic control strategy paradigm has been shifted from the private auto-oriented to the public transit-oriented. Introduction of exclusive median bus lanes (EMBL) in Seoul, Korea, has especially accelerated such changes in transportation policy and thus highway environment. Left-turning movement treatment at signalized intersections where EMBL pass through has been emerged as one of the rising problems associated with a current signal head with 4-signal lens, the Korea standard. This study proposes a new signal phase operation scheme for signal operation at an isolated intersection where EMBL pass through. The authors propose to use of an exclusive bus signal head indicating right-of-way of transits on EMBL only. Based on it, three different phase operation scheme were developed for left-turn treatments for traffic control with (1) traffic responsive control mode and (2) time-of-day traffic control mode. In addition, methodologies to design and develop signal maps for the proposed signal phase schemes are also developed. The proposed operation can only be possible when additional uses of signal state relay boards are allowed.

  • PDF

Analysis of the Effects of Traffic Signal Operation Methods (대전시 신호운영체계 개편에 따른 효과분석)

  • Lee, Jung-Beom;Lee, Beom-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.60-67
    • /
    • 2010
  • Delay reduction of vehicles at the intersection is highly dependent on the signal operation method. Most previous traffic operations have focused on minimizing delay by adjust traffic offset. However, these methods have limitation in solving traffic problem if the volume reaches or exceeds the capacity. In this paper, it was analyzed that the effectiveness of various signal operation methods such as left-turn prohibition, and using protected mixed with permitted left turn using the traffic data from Daejeon city. In case of the left-turn prohibition of a intersection, the control delay reduced from 54.2 seconds to 22.7 seconds and especially, the delay of the southbound was drastically reduced. In addition, the delay was highly reduced from 27.0 seconds to 12.1 seconds when the operation system was changed to use protected mixed with permitted left turn.

A Study on Operation Methodology of A Signalized Intersection Based on Optimization of Lane-Uses (차로배정 최적화를 고려한 신호교차로 운영방안에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.125-133
    • /
    • 2013
  • PURPOSES : The purpose of this study is to propose delay-minimizing operation methodology of a signalized intersection based upon optimization of lane-uses on approaching lanes for an intersection. METHODS : For the optimization model of lane-uses, a set of constraints are set up to ensure feasibility and safety of the lane-uses, traffic flow, and signal settings. Minimization of demand to saturation flow ratio of a dual-ring signal control system is introduced to the objective function for delay minimization and effective signal operation. Using the optimized lane-uses, signal timings are optimized by delay-based model of TRANSYT-7F. RESULTS : It was found that the proposed objective function is great relation with delay time for an intersection. From the experimental results, the method was approved to be effective in reducing delay time. Especially, cases for two left-turn lanes reduced greater delays than those for a left turn lane. It is noticed that the cases for different traffic volume by approach reduced greater delays than those for the same traffic volume by approach. CONCLUSIONS : It was concluded that the objective function is proper for lane-uses optimizing model and the operation method is effective in reducing delay time for signalized intersections.

Right-Turn Vehicle Supplementary Signal Improvement at Intersections (교차로 우회전 차량 보조등 개선)

  • LEE, Nam Soo;KIM, Yu Chan;LIM, Joon Beom;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.441-448
    • /
    • 2015
  • This study aims to suggest a reasonable signal operation method for right-turn traffic management. It was found that the right-turn vehicle supplementary signal is currently operated without clear regulations or criteria. It was also analyzed that right-turn supplementary signals are used without consistency, there is a risk of traffic accidents due to the discordance between supplementary signals and traffic signals of forward vehicles, there is a lack of basis for prohibition of a right turn when right-turn vehicle's supplementary signal is red and the flashing red signal is used in a different sense from the law. In order to see the effect of the installed right-turn vehicle supplementary signals on traffic signal violation, a field investigation was conducted. As the result, there was a high proportion of signal violation on the approach lane with right-turn supplementary signals and this means that right-turn supplementary signals hardly influenced the reduction in proportion of signal violation during a right turn. Additionally, a survey was carried out to see if there were differences in driver's interpretation of traffic signals depending on the installation of right-turn supplementary signals. As the result of the survey, there were no differences in interpretation of traffic signals depending on the installation of right-turn supplementary signals or the types of right-turn supplementary signals. A right turn when the signal was red did not lead to serious traffic accidents, so it is thought that there should be a careful consideration of a total ban on a right turn when the signal is red, in order to prevent driver's confusion due to the change of the signal system. Unless there is a disturbance to cars and pedestrians after a temporary stop when the signal is red, there is a need to specify that vehicles must stop temporarily in the Road Traffic Act to facilitate a right turn. What this study finally suggested is to use tri-colored arrow signals for right-turn car supplementary signals to convey a signal to a driver clearly.

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.