• Title/Summary/Keyword: turbulent flame

Search Result 425, Processing Time 0.021 seconds

Zone-conditioned CMC 모델을 이용한 부분예혼합 난류연소 모델링 (Modeling of Partially Premixed Turbulent Combustion by Zone-Conditioned Conditional Moment Closure)

  • 이은주;김승현;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.41-45
    • /
    • 2002
  • The zone-conditioned CMC equations are derived by taking an unconditional average of the generic conservation equations multiplied by delta and Heaviside functions in terms of mixture fraction and reaction progress variable. The resulting equations are essentially in the same form as the single zone CMC equations except for separate flow fields for burned and unburned gas. The zone-conditioned two-fluid equations are applied to a stagnating turbulent premixed flame brush of Cheng and Shepherd[5l. It is shown that the flame stretch factor is of crucial importance to accurately reproduce the measured mean reaction progress variable and conditional velocities. Further work is in progress for the relationship between surface and volume averages and extension to partially premixed combustion on the basis of a triple flame structure, e. g. in a lifted turbulent diffusion flame.

  • PDF

연소공기의 산소부화농도에 따른 난류확산 평면화염의 연소특성 (Combustion Characteristics of a Turbulent Diffusion Flat Flame According to Oxygen Enriched Concentration of Combustion Air)

  • 곽지현;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.281-288
    • /
    • 2004
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by improving the burning rate and by increasing the flame temperature. Flame figures, OH radical intensities, temperature distributions and emissions concentration were examined according to oxygen enriched concentration(OEC) in a turbulent diffusion flat flame. As long as the oxygen enriched concentration was increased, the length and volume of the flat flame was decreased while OH radical intensity was raised and the flame temperature was increased. However, RMS of the fluctuating temperature was decreased, and more homogeneous temperature field was formed. Thermal NO also was increased with increase of oxygen enriched concentration, but CO was decreased due to the increase of chemical reaction rate.

On the Effect of Presumed PDF and Intermittency on the Numerical Simulation of a Diffusion Flame

  • Riechelmann, Dirk;Fujimori, Toshiro
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.23-28
    • /
    • 2001
  • In the present work, the effect of PDF selection and intermittency on the result of the numerical simulation are examined by the simulation of a turbulent methane-air jet diffusion flame. As to the PDFs, beta-function and clipped Gaussian are considered. Results for the pure mixing jet are compared with experimental results. Then, the turbulent flame is calculated for the same conditions and the results obtained for the several models are compared. It is found that the clipped Gaussian distribution coupled with consideration of intermittency recovers the experimental data very well. As to the reacting flow results, the main overall properties of the turbulent jet diffusion flame such as maximum flame temperature are less affected by the choice of the PDF. Flame height and NO emissions, on the contrary, appear to be significantly influenced.

  • PDF

난류예혼합화염이 음파의 산란에 미치는 영향에 관한 연구 (The Effect of Turbulent Premixed Flame on the Wave Scattering)

  • 조주형;백승욱
    • 한국연소학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2007
  • Analytical investigation of acoustic wave scattering from turbulent premixed flames was conducted to evaluate the acoustic energy amplification/damping. Such acoustic energy change is attributed to the acoustic velocity jump due to flame's heat release. Small perturbation method up to second order and stochastic analysis were utilized to formulate net acoustic energy and the energy transfer from coherent to incoherent energy. Randomly wrinkled flame surface is responsible for the energy transfer from coherent to incoherent field. Nondimensional parameters that govern net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, incidence angle, and temperature ratio. The dependence of net acoustic energy upon these parameters is illustrated by numerical simulations in case of Gaussian statistics of flame front. Total net energy was amplified and the major factors that affect such energy amplification are incidence angle and temperature ratio. Coherent (incoherent) energy is damped (amplified) with rms height and correlation length of flame front.

  • PDF

H2/CO 합성가스의 난류 제트 확산화염에서 EINOx Scaling (EINOx scaling of H2/CO Syngas Non-premixed Turbulent Jet Flame)

  • 황정재;손기태;김태성;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.55-58
    • /
    • 2012
  • EINOx scaling for $H_2/CO$ non-premixed turbulent jet flame was conducted. NOx concentration and flame length were measured simultaneously with varying flow conditions. Flame length increases with Reynolds number which means the flames in buoyancy-momentum transition region. We assessed the previous Chen & Driscoll's scaling with present results. However, the scaling cannot satisfy the present results. We proposed new scaling which is addressed the simplified flame residence time. The new scaling satisfies the results of $H_2/CO$ syngas flame as well as pure hydrogen flames.

  • PDF

산소부화공기가 난류 확산 평면화염의 연소에 미치는 영향 (Effect of Oxygen Enriched Air on the Combustion of a Turbulent Diffusion Flat Flame)

  • 곽지현;전충환;장영준
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.1-7
    • /
    • 2003
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and by the high temperature flame. Flame figures, OH radical intensities, temperature distributions and emission concentrations were measured according to oxygen enriched concentration and swirl number in a turbulent diffusion flat flame. It appeared that flame figure became flat and NO concentration decreased with increase of swirl number, and that the flame temperature increased high with increase of oxygen enriched concentration. In particular, it was most significant between oxygen concentration $40{\sim}60%$.

  • PDF

난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성 (Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame)

  • 이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

광계측 기법을 이용한 층류 및 난류 확산 화염에서의 매연 측정에 관한 연구 (A Study on the Soot Measurement in Laminar and Turbulent Diffusion Flame Using the Laser Diagnostics)

  • 이준용;한용택;임준원;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3073-3078
    • /
    • 2008
  • In this study to find out the amount of soot, LII method, which utilizes a laser, was used in laminar diffusion flame and based upon the temperature and soot measured from the turbulent Diesel diffusion flame in the constant-volume chamber using the two-color method. Through these experiments, we could know that the LII signal is generally proportional to the soot amount in a laminar diffusion flame. And we could acquire the temperature and soot using the two-color method in a turbulent Diesel diffusion flame effectively. In addition to, this experiment revealed that the KL factor was high on parts of the chamber where the temperature dropped. On the other hand, the KL factor was low where the temperature increased rapidly. Also, it was possible to measure the highest temperature of a turbulent Diesel diffusion flame is approximately 2300K.

  • PDF

난류 부분예혼합 제트화염에 대한 난류 및 연소모델의 예측성능 검토 (Investigation of the Prediction Performance of Turbulence and Combustion Models for the Turbulent Partially-premixed Jet Flame)

  • 김유정;오창보
    • 한국화재소방학회논문지
    • /
    • 제28권4호
    • /
    • pp.35-43
    • /
    • 2014
  • 3개의 난류모델과 3개의 연소모델로 구성된 9개의 모델조합을 이용하여 난류 부분예혼합 제트화염 구조에 대한 수치적 예측성능을 검토하였다. 이용된 난류모델은 표준 ${\kappa}-{\varepsilon}$ 모델(SKE), Realizable ${\kappa}-{\varepsilon}$ 모델(RKE) 및 Reynolds 응력모델(RSM)이며 연소모델들은 Eddy Dissipation Concept 모델(EDC), Steady Laminar Flamelet 모델(SLF)와 Unsteady Laminar Flamelet 모델(ULF)이다. 9개 모델조합의 예측성능을 평가하기 위하여 실험결과가 알려진 Sandia D 화염인 난류 부분예혼합 제트화염을 대상으로 수치계산을 수행하였다. 얻어진 결과로서, 화염길이의 예측은 RSM > SKE > RKE순으로 길게 예측하였으며, RKE 난류모델은 화염길이를 너무 과소 예측하는 것을 확인하였다. RSM + SLF과 RSM + ULF의 조합은 화염길이는 비교적 잘 예측하였지만 하류에서의 화염온도를 과대 예측하였다. 반면에 SKE와 연소모델의 조합에서 SLF 또는 ULF 조합은 화염길이 뿐만 아니라 하류에서의 화염온도도 비교적 잘 예측하였는 것을 확인하였다. 반경방향 화염온도 및 화학종 농도분포를 비교해 본 결과 SKE와 연소모델의 조합이 가장 예측성능이 뛰어났으며 SKE + ULF의 조합이 가장 우수한 예측성능을 갖는 것을 확인하였다.