• 제목/요약/키워드: turbulence function

검색결과 300건 처리시간 0.035초

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

능동 난류 생성을 통한 장대 교량의 공력 특성 비교 (Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences)

  • 이승호;권순덕
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.341-349
    • /
    • 2011
  • 본 연구에서는 다양한 풍동실험을 통하여 기류 조건에 따른 트윈박스 거더 교량의 공기역학적 특성을 파악하는데 그 목적이 있다. 이를 위하여 자연적인 난류를 생성할 수 있는 능동 난류 발생장치를 개발하였고 검증하였다. 그리고 능동 난류 및 격자 난류 조건하에서 정적공기력, 비정상공기력 그리고 버페팅 응답 측정 실험을 수행하였다. 풍동실험 결과를 보면, 난류 적분길이는 교량의 정적공기력과 $A_1^*$를 제외한 플러터계수에는 영향을 주지 않는 것으로 나타났다. 그리고 난류 강도는 비정상공기력에 일부 영향을 미치고, 난류 적분길이 또한 일부 수직 방향 성분에 영향을 주는 것으로 나타났다.

흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구 (The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine)

  • 강건용;이진욱;정석용;백제현
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

난류모델을 이용한 개수로 급축소부 흐름의 수치해석 (A Numerical Analysis of Flow through Open Channel Constrictions using Turbulence Model)

  • 최흥식
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.201-210
    • /
    • 1997
  • $textsc{k}$-$\varepsilon$난류모델을 이용한 개수로 급축소부 흐름의 해석을 위한 수치모형을 개발하였고, 그 수치실험결과는 실험결과와 잘 일치하였다. 이는 난류모델에 의한 적절한 난류 와점성계수의 산정이라 생각된다. 유함수 및 유속분포의 분석을 통한 축소부 통과후 급변화 흐름의 수리특성을 분석하였고, 또한 난류 와점성계수의 분포를 분석하였다. 따라서 천수방정식의 점성항에 경험적인 유효점성계수의 도입보다는 흐름의 양상과 장소에 따라서 변화하는 난류와점성계수의 산정에 의한 급변화흐름의 해석이 필요하다.

  • PDF

Turbulence in Molecular clouds : Observation versus Simulation

  • 조현진;강혜성;류동수;김종수;조정연
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We have studied the statistical properties of turbulence in molecular clouds identified in the Boston University - Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS). Toward this end, the probability density function (PDF) and velocity distribution were measured for about 50 molecular clouds. We found there exists a good correlation between the PDF width and the velocity dispersion for these molecular clouds. In order to investigate how general properties of astrophysical turbulence depends on the plasma parameters such as magnetic field strength and sonic Mach number, we performed three-dimensional MHD simulations. We then examined if the observed characteristics of interstellar turbulence are consistent with theoretical results from MHD simulations.

  • PDF

수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석 (Transported PDF Model for Turbulent Nonpremixed Flames)

  • 이정원;석준호;김용모
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

On the Length Scale and the Wall Proximity Function in the Mellor-Yamada Level 2.5 Turbulence Closure Model for Homogeneous Flows

  • Lee, Jong-Chan;Jung, Kyung-Tae
    • Journal of the korean society of oceanography
    • /
    • 제32권2호
    • /
    • pp.75-84
    • /
    • 1997
  • Relation between the length scale and the wall proximity function in the Mellor-Yamada level 2.5 turbulence closure model has been investigated through various experiments using a range of wall proximity functions. The model performance has been evaluated quantitatively by comparing with laboratory data for wind-driven flow (Baines and Knapp, 1965) and for open-channel flows without and with adverse wind action (Tsuruya, 1985). Comparison shows that a symmetric wall proximity function used by Blumberg and Mellor(1987) gives rise to current profiles with better accuracy than asymmetric wall proximity functions considered. It is noted that in modelling homogeneous flows the length scale 1= 0.31${\|}$z${\|}$(1+z/h) can be used with tolerable accuracy.

  • PDF

적응격자계를 이용한 경계층의 확산제어천이 예측 (Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid)

  • 조지룡
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Modelling of starch industry wastewater microfiltration parameters by neural network

  • Jokic, Aleksandar I.;Seres, Laslo L.;Milovic, Nemanja R.;Seres, Zita I.;Maravic, Nikola R.;Saranovic, Zana;Dokic, Ljubica P.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.115-121
    • /
    • 2018
  • Artificial neural network (ANN) simulation is used to predict the dynamic change of permeate flux during wheat starch industry wastewater microfiltration with and without static turbulence promoter. The experimental program spans range of a sedimentation times from 2 to 4 h, for feed flow rates 50 to 150 L/h, at transmembrane pressures covering the range of $1{\times}10^5$ to $3{\times}10^5Pa$. ANN predictions of the wastewater microfiltration are compared with experimental results obtained using two different set of microfiltration experiments, with and without static turbulence promoter. The effects of the training algorithm, neural network architectures on the ANN performance are discussed. For the most of the cases considered, the ANN proved to be an adequate interpolation tool, where an excellent prediction was obtained using automated Bayesian regularization as training algorithm. The optimal ANN architecture was determined as 4-10-1 with hyperbolic tangent sigmoid transfer function transfer function for hidden and output layers. The error distributions of data revealed that experimental results are in very good agreement with computed ones with only 2% data points had absolute relative error greater than 20% for the microfiltration without static turbulence promoter whereas for the microfiltration with static turbulence promoter it was 1%. The contribution of filtration time variable to flux values provided by ANNs was determined in an important level at the range of 52-66% due to increased membrane fouling by the time. In the case of microfiltration with static turbulence promoter, relative importance of transmembrane pressure and feed flow rate increased for about 30%.

평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워 (Modal acoustic power of broadband noise by interaction of a cascade of flat-plate airfoils with inflow turbulence)

  • 정철웅;쥬딕빈센트;죠셉필립
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1467-1475
    • /
    • 2007
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

  • PDF