• 제목/요약/키워드: turbine bearing

검색결과 193건 처리시간 0.024초

스플라인-축 연결을 갖는 보조동력장치 가스터빈의 로터다이나믹 설계민감도 해석 (Rotordynamics Design Sensitivity Analysis of an APU Gas Turbine having a Spline Shaft Connection)

  • 이안성;하진웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.593-598
    • /
    • 2000
  • In this paper the critical speed analysis and design sensitivity investigation are carried out with an APU(auxiliary power unit) gas turbine having a spline shaft connection. The DDM(direct differential method) is directly applied to formulate the critical speed design sensitivity problem of a general nonsymmetric-matrix rotor-bearing system. The design sensitivity analysis have shown that the critical speed change rate to the support modeling of the spline shaft connection point is extremely negligible, and thereby its design uncertainty is lifted. It has also been confirmed that the critical speeds up to the 4th are not sensitive to the design stiffness coefficients of 4-main bearings or supports, including two air foil bearings. Further, the critical speed change rate to the shaft-element length have shown quantitatively that the spline shaft has some limited influence on the 4th critical speed.

  • PDF

서남해안 해저 토질을 대상으로 설계한 스퍼드캔의 지지력 및 침투 거동 분석을 위한 해석방법 비교 (Comparison of Analysis Methods for Designed Spudcan Bearing Capacity and Penetration Behavior for Southwest Sea Soil)

  • 김해빈;장범선;최준환;;강성욱
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.175-185
    • /
    • 2015
  • Jack-up type WTIV(Wind Turbine Installation Vessel) is used to avoid the effects of waves when installing wind turbines in the Southwest Sea of South Korea. During the preloading procedure, unexpected penetration may cause some risks such as excessive penetration or punch-through failure. To ensure the safety of the WTIV during preloading, the bearing capacities should be evaluated based on the soil data at each borehole. Eight boreholes (OW-1 to -8) have been drilled in the Southwest Sea of South Korea. The bearing capacities of a spudcan designed to be used in this district are calculated using both a conventional analysis and finite element analysis with the soil properties of OW-1 to -8. A finite element analysis is carried out for OW-1, -3, and -4 to gain an in-depth understanding of the soil behavior during the penetration. OW-1, -3, and -4 are representative boreholes for a strong layer overlying a soft layer, a general soft layer, and a soft layer overlying a strong layer, respectively. The resultant bearing capacity curves versus the depth of the numerical analysis are compared with the conventional method. The results show that the conventional analysis is conservative. Case studies for different spudcan areas and shapes are also conducted to seek an appropriate spudcan type for the Southwest Sea of South Korea. Finally, a spudcan with a rectangular shape and a bearing area of $112.8m^2$ is selected.

해상풍력 발전의 기술동향 및 모노파일 기술개발 방향 (Technical Issues for Offshore Wind-Energy Farm and Monopile Foundation)

  • 최창호;조삼덕;김주형;채종길
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.486-493
    • /
    • 2010
  • Recently, it has been a worldwide issue to develop offshore wind farm based on the past technical experiences of onshore wind turbine installation. In Korea, the government has the wind-energy to be a new-sustainable field of development to bring green-growth in near future and put political and fiscal efforts to support the academic and industrial technical development. Especially, there are much advancement for the fields of turbine, blade, bearing, grid connection, ETC. Correspondingly, technical needs do exist for the offshore foundation installation techniques in geotechnical point of view. Within few years, 2~5MW offshore wind turbines will be constructed at about 30m water depth and it is known that monopiles of D=4~6m are suitable types of foundation. In order to construct offshore wind-turbine foundation, technical developments for drilling machine, design manual, monitoring&maintenance technique are required. This paper presents technical issues with related to offshore wind farm and large diameter monopile in the point of renewable energy development.

  • PDF

수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구 (Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine)

  • 김청균;신인철;임광현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF

세굴에 기인한 해상풍력터빈 펜타팟 석션버켓 지지구조물의 극한한계상태 위험도 평가 (Ultimate Limit State Risk Assessment of Penta Pod Suction Bucket Support Structures for Offshore Wind Turbine due to Scour)

  • 김영진;;김동현
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.374-382
    • /
    • 2021
  • 5.5 MW 해상풍력터빈을 위해 새로 개발된 펜타팟 석션버켓 지지구조물의 극한한계상태 위험도 평가를 진행하였다. 유의파고, 유의파 주기, 조류속 등 해양 환경조건을 고려한 세굴확률을 위험(hazard)으로 산정하였다. 석션버켓 지지구조물 기초의 극한한계상태 파괴기준을 적용하여 세굴 깊이에 따른 취약도를 산정하였다. 극한한계상태는 기초구조물의 지지력을 이용하여 정의하였다. 해저드와 취약도를 이용하여 펜타팟 석션버켓의 위험도를 산정하였다.

베어링 합금재에 대한 캐비테이션 침식 거동에 미치는 윤활제 환경의 영향 (Influence of Lubricating Oil Environments on Behavior of Cavitation Erosion for Alloy Metals of Bearing)

  • 임우조;이진열
    • Tribology and Lubricants
    • /
    • 제9권1호
    • /
    • pp.55-61
    • /
    • 1993
  • Recently, due to the erosion damage that were generated increasingly at alloy metals of slide bearing by cavity of lubricating oil with tendency of high speed and high output of reciprocating engine, there is a need to study the process on the formation of cavitation erosion, and the characteristic of cavitation erosion at lubricating oil environments under various condition for marine ship. Therefore, the apparatus of cavitation erosion experiment used 20 KHz, $24 \mu m$ piezoelectric vibrator. The main results obtained through this test method are as follows: 1. The max. erosion rate at lubricating oil environments was related to the change of space, oil film thickness, and shown to tendency of gear oil>system oil>turbine oil>mixed oil environments with different viscosity. 2. The pitted hole by cavitation erosion at high viscosity oil environments became small and deep, and in addition to, they appeared to be wide and shallow at low viscosity.

삼성테크윈의 터보식 공기 압축기 소개 (An Introduction of a Turbo Air Compressor in STW)

  • 이형태;이영섭;권우성;문경찬;인배석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.315-322
    • /
    • 2003
  • High performance turbo compressor, Turbo Master, was successfully developed by applying combined technology and experience based on aero gas turbine engines. The Turbo Master, developed using our own technology, was designed for high performance and reliability And the Turbo Master will supply absolutely oil-free compressed air to your facilities. In special, a next-generation micro compressor was lately developed, using air foil bearing and high speed motor known as the latest high technology.

  • PDF

공진을 고려한 발전소 여자기 지지부의 동특성 개선 (Dynamic Characteristic Improvement for Journal Bearing Support of Power Plant Exciter considering Resonance)

  • 양경현;조철환;배춘희;원종범;김성휘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.156-160
    • /
    • 2000
  • When the structure supporting the rotor as well as the rotor itself is in the resonant range, it cause the vibration problem. Although the static characteristics of structures was considered during the design process, we must consider the resonance problem between the excitation(the main revolution frequency of the rotor) between the dynamic characteristics of its structures. This paper presents we improved the dynamic characteristic of a bearing support system to remove a resonance problem so that stabilized the turbine-generator system.

  • PDF

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권2호
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

AFB으로 지지된 탄성회전체의 위험속도 통과시험 (A test on passing through bending critical speed of Flexible Rotor supported by AFB)

  • 이영섭;염병용;김진형;김명섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.354-359
    • /
    • 2001
  • A flexible rotor was smoothly passed through its bending critical speed, which is supported by AFB. Then, maximum magnitude of the rotor vibration at the middle point was 25${\mu}$m. The test rig was largely consisted of air turbine, multi-leaf type air foil bearing and flexible rotor and its bending critical speed was 32,600 rpm. And the balancing system and method for field balancing of the flexible rotor were developd successfully.

  • PDF