• Title/Summary/Keyword: turbid water

Search Result 233, Processing Time 0.022 seconds

A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its Mitigation (소양강 탁수 현황과 저감에 대한 수리학적 분석)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.85-92
    • /
    • 2008
  • Water in Soyang River is an essential source for citizens of Chuncheon and Seoul areas. In 2006, turbid water in Soyang River aggravated by the typhoon Ewiniar, sustained for over 280 days unlike conventional years, then which interrupted water supply of Chuncheon and Seoul areas. Soil erosion derived from high cool lands constituting about 55% of Soyang River area is considered one of main causes for the turbid water, including imprudent development of mountainous area, road expansion, and road construction for forestry. According to analysis of turbidity, precipitation and reservoir level in Soyang River region for June 2006${\sim}$August 2008, the turbidity showed a peak correlation (r = 0.28) at a lag time of 49 days and especially did an excellent correlation (r = 0.60) with the reservoir level at a lag of 4 days. In the meantime, a critical turbidity of 31 NTU at Soyanggang Dam was estimated, over which would cause turbid water at Paldang Dam. In addition, a master recession curve was suggested, from which sustaining time of turbid water can be predicted.

Operation and Diagnosis of DAF Water Treatment Plant at Highly Turbid Raw Water (고탁도시 DAF 정수장의 운영 및 진단)

  • Kwon, Soon-Buhm;Ahn, Hyo-Won;Kang, Jun-gu;Son, Byong-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.191-200
    • /
    • 2004
  • DAF process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when the freshwater blooms occut or raw water turbidity become high. Pre-sedimentation iS prepared in case when raw water turbidity is very high by rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while it is difficult to remove in sedimentation. One of the main concerns in adoption of DAF (Dissolved Air-Flotation) process is a high raw water turbidity problem. That is, DAF is not adequate for raw water, which is more turbid than 100NTU. In order to avoid this problem, pre-sedimentation basins are prepared in DAF plant to decrease the turbidity of DAF influent. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, DAF process coupled with sedimentation is suggested that pre-sedimentation with optimum coagulation prior to DAF would be appropriate.

Development of Downstream Turbid Water Management System Using SWAT and KoRiv1 Dynamic Water Quality Simulation Model (SWAT 및 KoRiv1 모형을 활용한 하류하천 탁도관리 시스템구축)

  • Noh, Joon-Woo;Kim, Jeong-Kon;Lee, Sang-Uk
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1035-1043
    • /
    • 2009
  • High turbid water in the River has been one of the major concerns to the downstream residence. Especially in the Nakdong River basin severe turbid water problem occurred in year 2002 and 2003 due to the typhoon Rusa and Maemi consecutively. The main objective of this study is to develop turbid water management system in reservoir downstream of the Nakdong River combining physically based semi-distributed hydrologic simulation model SWAT with 1-dimensional dynamic water quality simulation model. SWAT model covers the area from the upstream of the Imha and Andong reservoir to the Gumi gage station for the purpose of estimating flow rates and suspended sediment of the tributaries. From year 1999 to 2007 runoff simulation for 8 years $R_{eff}$ and $R^2$ ranges $0.46{\sim}0.9$, $0.54{\sim}0.99$ respectively. Through the linkage of models, outputs of SWAT model such as suspended sediment and flow rates of the tributaries can be incorporated into the 1-dimensional dynamic water quality simulation model, KoRiv1 to support joint reservoir operation considering the turbidity released from Imha and Andong reservoir. The applicability of model simulation has been tested for year 2006 and compared with measured data.

Dynamics of Turbid Water in a Korean Resernvoir with Selective Withdrawal Discharges (선택 취수하는 저수지에서 탁수의 동태)

  • Shin, Jae-Ki;Jeong, Seon-A;Choi, Il-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.423-430
    • /
    • 2004
  • This study intended to understand movements of turbid water in selective with drawal reservoirs before and after summer monsoon. Mean rainfall during November-May was low, compared to that during June-October. The reservoir water was discharged through watergates when previous rainfall and inflow exceeded 50 mm and $80\;m^3s^{-1}$, respectively. Intake towers were generally used except for the period of the high runoff. Average turbidity in gown-reservoir showed a difference of 29.9 NTU between premonsoon and postmonsoon. Diameter of particles of turbid water ranged between 0.435 and $482.9\;{\mu}m$. Fine particles such as clay were much denser than the larger particle. In the whole stations, clay component was relatively higher with a proportion of that in the particle distribution. Particle composition of turbid water showed that clay consisted of 94.4-98.9% and silt made of 1.1-5.6%. Analysis on turbid water movements derived from particle distribution showed a linear increase from the deep layer toward the surface layer in lower area of a reservoir. This was closely related with the hydraulic behavior of the reservoir, and heavily affected by the discharges through selective withdrawal towers and watergates. Turbid water originated from stream sediments in the middle area then resuspended in the down-reservoir causing a movement between the surface and middle layers of the reservoir. Therefore, such phenomenon needs to be understood for reservoir water quality management.

Spatio-temporal Distribution and Suspended Sediment Effects on Fish Flora in the Upper Basin of Soyang-Dam (소양댐 상류 유역 내 어류상의 시⋅공간 분포와 부유성 퇴적물 영향)

  • Yu Eunjin;Ahn Jongho;Lee Moonhwan;Jeon Dongjin
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.329-342
    • /
    • 2023
  • Turbid water and suspended sediment (SS) load are having negative consequences such as water quality degradation and ecological damage, thus necessitating the establishment of management guidelines to reduce their impact. The present work investigates the spatio-temporal distribution of fish species and the effects of turbid water from 2011-2016 in the upper reaches of Soyang-Dam. The family Cyprinidae is the largest population in the study area, among which Zacco platypus and Zacco koreanus are the dominant species. The diversity of species is relatively abundant in the upper watershed, while the seasonal effect on the population distribution remains unclear. Using two main common components of the empirical orthogonal function (EOF) analysis, the distribution characteristics of 27 species at five survey sites are revealed. Zacco koreanus is found to be predominant at the upstream A-Naerincheon, while Zacco platypus and Rhinogobius brunneus are found to be predominant at the upstream B-Bukcheon. Disturbance of an aquatic ecosystem has a relatively greater impact in the downstream, as-compared to the upper area-the high proportion of forest area is decreased whereas that of agricultural and urbanized areas is increased. The patterns of representative species are changed according to the mid- to long-term effects of turbid water and SS. Accordingly, the significant correlation between the SS load and fish distribution EOF analysis indicates that it should be considered as a potential alternative that can overcome the limitations of impact assessment on turbid water to the Fish Assessment Index (FAI). A comprehensive study examining the long-term effects of SS load to the fish ecosystems with a systematic statistical analysis of sufficiently accumulated data at the national level is needed as future research.

Geology in Drainage Field of the Imha Dam and Origins of High Turbid Water in the Imha Lake, Andong (안동 임하댐 유역의 지질과 임하호 고탁수의 원인)

  • Hwang, Sang-Koo;Jeong, Gi-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.771-786
    • /
    • 2006
  • Imha lake has a high turbid water which keeps up during a few months, as comparing to other dams. Origins of the high turbid water derive from suspended materials which compose of micro particles of clay and rock-forming minerals. They are the weathered products from surface rocks that relate with particular geology in drainage field of the Imha dim. Accordingly we have fundamentally surveyed the kinds, properties, distribution and structures of general geology, found a few particular geology that source clay materials, and traced the passage that their weathered products enter the dam. We have suggested the basic origins of increase in turbid degree from detecting kinds and behavior of the suspended materials cause high turbid water in the Imha lake.

Experimental Study on Synthetic Fiber Filled Channel for Treating Turbid Water at the Construction Sites and Protecting Drain System (합성섬유 충진 여과수로를 이용한 건설사업장의 흙탕물 처리 및 배수구 보호에 관한 실험적 연구)

  • Yuan, Qingke;Cheng, Jing;Park, Kisoo;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.537-545
    • /
    • 2016
  • In order to cope with the new and strict government regulations for turbid water discharge from construction sites, this study tested whether synthetic fiber filters can replace conventional best management practices. The filter efficiency was about 10 to 60% with a varying filter depth of 5 to 15cm, presuming extreme storm flow conditions to be in the range of 800 to 1500m/day of filtration rates. Fiber filter acts exactly like a granular filter, i.e. the separation efficiency is directly and inversely proportional to filter depth and rate, respectively. Based on the operational data, we suggested the Log-Log design relationship, which can be used to determine the filter depth and area. Compared to the widely used gravel filter which treats the turbid water at the construction site, about 20% higher efficiency was obtained under similar operating conditions. Cleaning the filter through a simple hand-washing method at the time of break-through, achieved about 90% soil recovery.

Dynamics of High Turbid Water Caused by Heavy Rain of Monsoon and Typhoon in a Large Korean Reservoir (Andong Reservoir) (인공호에서 몬순과 태풍 강우에 의한 고탁수층의 이동과 소멸특성)

  • Park, Jung-Won;Shin, Jae-Ki;Lee, Hee-Moo;Park, Jae-Chung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.105-117
    • /
    • 2005
  • During the period of heavy rain from 2002 to 2004, the characteristics of the inflow, temporal and spatial fluctuations of high turbid water according to thermal stratification were studied on the Andong Reservoir which is the largest artificial lake in the Nakdong River basin, Korea. Thermal stratification was formed in June. Its structure determined to the pathway of inflowing turbid water and has affected by the transportation of high turbid water. Regardless of the time and amount of inflow, the high turbid water showed the shape of underflow at the riverine zone, separated from the bottom at the transition zone and moved to the lacustrine zone with the shape of density current. The plunging point depended on the time and amount of inflow. The distributions of thermal stratification and DO concentrations were changed by inflowing discharge. Two thermoclines and minimum DO layers were found out existing at metalimnion in a specific time, respectively. The layer of high turbid water which formed with the thickness of 20 m at the maximum below the depth of 15 m moved toward dam. Not settled to the bottom, the newly formed layer was discharged through the intake-outlet and dispersed into all layers by the circulation in the fall.

A study on the application of modified hydraulic conductivity to consider turbid water for open-cut riverbed infiltration process: numerical modeling approach (개착식 하상여과에서 탁수를 고려한 수정 투수계수 적용 연구: 수치모델링을 통한 접근)

  • Yang, Jeong-Seok;Kim, Il-Hwan;Jeong, Jae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.741-748
    • /
    • 2016
  • Laboratory scale model was constructed for open-cut riverbed infiltration experiment and four kinds of media were selected, medium sand, sand, volcanic rock, and gravel, for the experiment. Hydraulic conductivity for each medium and flow rate from the collecting pipe with functional screen were estimated from the experiment. Modified hydraulic conductivity scenarios considering turbid water (30~50 NTU) were applied in Visual MODFLOW modeling to analyze the effects of turbid water on the flow rate. Twenty-two scenarios were generated considering prticles in turbid water and applied to each medium cases in MODFLOW modeling. The minimum error was occurred when the gravel medium had 20% less hydraulic conductivities for the third layer-depth from the top and clay particles in turbid water might play a role in adsorption process to the surface of volcanic rock (2~5 mm). For medium sand case the error was also quite small when the mediumhas 5% less hydraulic conductivities for the second layer-depth from the top.

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.