Dynamics of Turbid Water in a Korean Resernvoir with Selective Withdrawal Discharges

선택 취수하는 저수지에서 탁수의 동태

  • Shin, Jae-Ki (Korea Institute of Water and Environment, Korea Water Resources Corporation(KOWACO)) ;
  • Jeong, Seon-A (Korea Institute of Water and Environment, Korea Water Resources Corporation(KOWACO)) ;
  • Choi, Il-Hwan (Korea Institute of Water and Environment, Korea Water Resources Corporation(KOWACO)) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 신재기 (한국수자원공사 수자원연구원) ;
  • 정선아 (한국수자원공사 수자원연구원) ;
  • 최일환 (한국수자원공사 수자원연구원) ;
  • 황순진 (건국대학교 환경과학과)
  • Published : 2004.12.31

Abstract

This study intended to understand movements of turbid water in selective with drawal reservoirs before and after summer monsoon. Mean rainfall during November-May was low, compared to that during June-October. The reservoir water was discharged through watergates when previous rainfall and inflow exceeded 50 mm and $80\;m^3s^{-1}$, respectively. Intake towers were generally used except for the period of the high runoff. Average turbidity in gown-reservoir showed a difference of 29.9 NTU between premonsoon and postmonsoon. Diameter of particles of turbid water ranged between 0.435 and $482.9\;{\mu}m$. Fine particles such as clay were much denser than the larger particle. In the whole stations, clay component was relatively higher with a proportion of that in the particle distribution. Particle composition of turbid water showed that clay consisted of 94.4-98.9% and silt made of 1.1-5.6%. Analysis on turbid water movements derived from particle distribution showed a linear increase from the deep layer toward the surface layer in lower area of a reservoir. This was closely related with the hydraulic behavior of the reservoir, and heavily affected by the discharges through selective withdrawal towers and watergates. Turbid water originated from stream sediments in the middle area then resuspended in the down-reservoir causing a movement between the surface and middle layers of the reservoir. Therefore, such phenomenon needs to be understood for reservoir water quality management.

본 연구는 선택 취수하는 저수지에서 장마 전후에 탁수의 거동을 파악하고자 하였다. 강수량은 11월-5월에 적었고, 6월-10월에 풍부하여 대비가 되었다. 수문에 의한 방류는 선행 강수량과 유입량이 각각 50mm, $80\;m^3^s{-1}$이상일 때 조작되었고, 그 외 기간은 대부분 취수탑을 통해 배출되었다. 하류부를 중심으로 비교할 때, 장마 전후 수중 탁도 차이는 평균값이 29.9NTU로서 장마 후에 크게 증가하였다. 탁수에 포함된 입자 크기의 범위는 0.435-$482.9\;{mu}m$이었고, 전 정점에서 clay성분의 미세립자로 갈수록 크기 분포가 더욱 조밀하였을 뿐만 아니라 상대적으로 차지하는 비율도 높았다. 탁수의 입자 분포에서 clay는 94.4-98.9%, silt는 1.1-5.6% 범위로서 총 입자수의 대부분을 차지하였다. 입자 분포에 의한 탁수의 흐름을 분석한 결과, 저수지의 하류부에서 총입자수는 저층에서 표층으로 갈수록 선형적인 증가가 뚜렷하였다. 이것은 저수지의 수리학적 환경과 밀접한 관련성이 있었고, 선택취수탑과 수문을 통한 방류에 의한 영향이 큰 것으로 추정되었다. 하천으로부터 유입된 탁수는 중류부에서 침강되다가 하류부에서 재부유하는 현상이 발생함으로서 표층-중층을 통한 탁수 이동이 현저하였다. 따라서, 향후 저수지 수질관리 측면에서 이에 대한 육수학적 영향을 규명할 필요성을 제시하고자 한다.

Keywords

References

  1. AWWA. 1999. Water Quality and Treatment, A Handbook of Community Water Supplies. 5th ed. American Water Works Association, McGraw-Hill, Inc. New York, USA
  2. Baxter, R.M. 1985. Environmental effects of reservoir. In: Gunnison, D., ed. Microbial Processes in Reservoirs. Developments in Hydrobiology 27. Dr. W. Junk Publ., Dordrecht. pp. 1-26
  3. Ford, D.E. 1990. Reservoir transport process. In: Thornton, K.W., B.L. Kimmel and F.E. Payne. eds. Reservoir Limnology-Ecological Perspectives. John Wiley & Sons, Inc. pp. 15-41
  4. Old, G.H., G.J.L. Leeks, J.C. Packman, B.P.G. Smith, S. Lewis, E.J. Hewitt, M. Holmes and A. Young. 2003. The impact of a convectional summer rainfall event on river flow and fine sediment transport in a highly urbanised catchment: Bradford, West Yorkshire. The Science of the Total Environment. (in press)
  5. Shin, J.K., S.J. Hwang and K.J. Cho. 2002. Phosphorus flux from the sediment and its behavior through hypolimnetic discharge in a large reservoir in S. Korea (Taechong Reservoir). Proceedings of ISRLE. Japan
  6. Shin, J.K. and S.J. Hwang. 2004. Development and dynamics of turbid water in the lotic and lentic ecosystems, Korea. Annual Meeting Congress, Korean Society Limnology in 2004
  7. Shin, J.K., C.K. Kang and S.J. Hwang. 2003. Daily variations of water turbidity and particle distribution of high turbid-water in Paltang Reservoir, Korea. Korean J. Limnol. 36: 257-268. (in Korean)
  8. Walling, D.E., P.N. Owens, B.D. Waterfall, G.J.L. Leeks and P.D. Wass. 2000. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. The Science of the Total Environment 194/195: 205-222
  9. Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. 3rd Edition. Academic Press, California, USA. 1006p
  10. Wetzel, R.G. and G.E. Likens. 1991. Limnological Analyses. 2nd ed. Spring-Verlag New York, Inc., USA. pp. 15-30
  11. Winston, W.E. and R.E. Criss. 2002. Geochemical variations during flash flooding, Meramec River basin, May 2000. Journal Hydrology 265: 149-163
  12. Wotton, R.S. 1994. The Biology of Particles in Aquatic Systems. 2nd ed. CRC Press, Inc. USA. 325p