• Title/Summary/Keyword: turbid water

Search Result 234, Processing Time 0.022 seconds

Risk analysis of red water and turbid water based on seasonal water usage (계절별 수도사용량에 따른 적수 및 탁수발생 위험도 분석)

  • Han, Jin Woo;Lee, Sang Mok;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.451-460
    • /
    • 2023
  • In this study, the risk of red water and turbid water occurrence was analyzed by classifying it into detachment risk and deposition risk. First, risk factors for red water and turbid water were determined, and hydraulic analysis was conducted considering seasonal water consumption. The applied area was Cheongju City, and the risk analysis was conducted across 13 areas, and the areas with high deposition risk and high detachment risk were selected. The high risk of both detachment and deposition can be judged as an area with a very high probability of causing water quality problems. The areas with the highest deposition risk and detachment risk are the old towns of Nae deok1-dong and Yul1yang-dong, which are the oldest areas in Cheongju City with an age of more than 30 service years of pipe installation. By analyzing the risk of deposition and detachment, it will be possible to strengthen the maintenance function of the water supply network to provide the safe water to citizens and increase their confidence for tap water.

Spatial Interpretation of Monsoon Turbid-water Environment in a Reservoir (Yongdam) Discharging Surface Water, Korea (표층수를 방류하는 저수지(용담호)에서 몬순 탁수환경의 공간적 해석)

  • Shin, Jae-Ki;Hur, Jin;Lee, Heung-Soo;Park, Jae-Chung;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.933-942
    • /
    • 2006
  • In this study, temperature, turbidity, suspended paniculate matter (SPM) distribution and mineral characteristics were investigated to explain spatial distribution of the turbid-water environment of Yongdam reservoir in July, 2005. Six stations were selected along a longitudinal axis of the reservoir and sampling was conducted in four depths of each station. Water temperature was showed the typical stratified structure by the effects of irradiance and inflow. Content of inorganic matter in suspended particles increased with the concentration of suspended particulate matter (SPM) due to the reduction of ash-free dry matter (AFDM). Turbidity ranged from 0.6 to 95.1 NTU and the maximum turbidity value of each station sharply increased toward downstream from upstream. The high turbidity layers were located at the depth between 12~16 m. Particle size ranged from 0.435 to $482.9{\mu}m$. day and silt-sized particles corresponded 91.9~98.9% and 1.1~8.0% in total numbers of SPM, respectively. Turbidity showed high correlations with clay (r=0.763, p<0.05) and silt content (r=0.870, p<0.05).Inorganic matter content (r=0.960, p<0.01) was more correlated with turbidity than organic matter (r=0.823, p<0.05). Mineral characterization using x-ray diffraction and electron probe microanalyzer demonstrated that the major minerals contained in the SPM were kaolinite, illite, vermiculite and smectite. As results of this study, surface water discharge as well as small size of the SPM were suggested as long-term interfering factors in settling down the turbid water in the reservoir.

Visibility with Different Location and Projection Angle of Light under Turbid Water (광원의 위치와 투사각에 따른 탁도별 시계 측정)

  • Jang, In-Sung;Jung, Sung-Jun;Baek, Won-Dae;Youn, Hee-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3758-3765
    • /
    • 2011
  • The operators' visibility of underwater construction equipments plays a key role for safe and efficient construction. The visibility can be limited within 30cm in the West Sea of South Korea where water is considerably turbid. This paper investigates the appropriate location and projection angle of light to be used for construction equipments using model tests. It was discovered that visibility was obtained when the light was located near the target objects with a projection angle of $45^{\circ}$.

The Analysis of Soil Erosion in Water-pollutant Buffering Zone of Imha reservoir using Geo-Spatial Data (지형공간정보를 이용한 임하호 수변구역 토사유실 분석)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Park, Jin-Hyeog;Chae, Hyo-Sok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.908-912
    • /
    • 2006
  • Geology and terrain of Imha basin has a very weak characteristics to soil erosion, so much soil particles flow into Imha reservoir and bring about high density turbid water when it rains a lot. Especially, since the agricultural area of Imha basin is mainly located in river boundary, Imha reservoir has suffered from turbid water by soil erosion. Therefore, it is important to estimate the influence of soil erosion to establish efficient management of water-pollutant buffering zone for the reduction of turbid water. By applying GIS-based RUSLE model, this study can acquire 12.23% that is the ratio of soil erosion in water-pollutant buffering zone and is higher than area-ratio (9.95%) of water-pollutant buffering zone. This is why the area-ratio of agricultural district (27.24%) in water-pollutant buffering zone is higher than the area-ratio of agricultural district (14.96%) in Imha basin. Also as the result of soil erosion in sub-basin, Daegok basin shows highest soil erosion in water-pollutant buffering zone, second is Banbyeon_10 basin and last is Seosi basin.

  • PDF

The Analysis of GIS DB for the Evaluation of Turbid Water Considering Spatial Characteristics of River Channel (하천의 공간적 특성을 고려한 탁수평가 GIS DB 분석)

  • Park Jin-Hyeog;Lee Geun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Andong and Imha reservoir adjoins each other, but turbid water shows too much different when it rains. The characteristics of geological rock in basin and agricultural area around river boundary are pointed out as the major reason of turbid water of Imha reservoir. This study analyzed rock type of topsoil layer using soil map by National Institute of Agricultural Science and Technology (NIAST). Among rock types, sedimentary rock affects on the occurrence of turbid water. In the analysis of sedimentary rock type, the distribution of sedimentary rock of Imha basin shows 1.87 times higher than that of Andong basin. Also, the distribution of sedimentary rock of Imha basin shows higher than that of Andong basin within 1,600m from river channel in according to the buffer zone of river boundary. And Agricultural area of Imha basin shows higher than that of Andong basin in analysis of land cover within 1,600 m from river channel. As this agricultural characteristics of Imha basin, cover management factor of Imha basin represents more higher that that of Andong basin.

Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm (GOCI영상의 탁한 해역 대기보정: MUMM 알고리즘 개선)

  • Lee, Boram;Ahn, Jae Hyun;Park, Young-Je;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • The early Sea-viewing Wide Field-of-view Sensor(SeaWiFS) atmospheric correction algorithm which is the basis of the atmospheric correction algorithm for Geostationary Ocean Color Imager(GOCI) assumes that water-leaving radiances is negligible at near-infrared(NIR) wavelengths. For this reason, all of the satellite measured radiances at the NIR wavelengths are assigned to aerosol radiances. However that assumption would cause underestimation of water-leaving radiances if it were applied to turbid Case-2 waters. To overcome this problem, Management Unit of the North Sea Mathematical Models(MUMM) atmospheric correction algorithm has been developed for turbid waters. This MUMM algorithm introduces new parameter ${\alpha}$, representing the ratio of water-leaving reflectance at the NIR wavelengths. ${\alpha}$ is calculated by statistical method and is assumed to be constant throughout the study area. Using this algorithm, we can obtain comparatively accurate water-leaving radiances in the moderately turbid waters where the NIR water-leaving reflectance is less than approximately 0.01. However, this algorithm still underestimates the water-leaving radiances at the extremely turbid water since the ratio of water-leaving radiance at two NIR wavelengths, ${\alpha}$ is changed with concentration of suspended particles. In this study, we modified the MUMM algorithm to calculate appropriate value for ${\alpha}$ using an iterative technique. As a result, the accuracy of water-leaving reflectance has been significantly improved. Specifically, the results show that the Root Mean Square Error(RMSE) of the modified MUMM algorithm was 0.002 while that of the MUMM algorithm was 0.0048.

The Influence Analysis of GIS-based Soil Erosion in Water-pollutant Buffering Zone (GIS기반 수변구역의 토사유실 영향 분석)

  • Lee, Geun Sang;Hwang, Eui Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.335-340
    • /
    • 2006
  • Geology and terrain of Imha basin has a very weak characteristics to soil erosion, so much soil particles flow into Imha reservoir and bring about high density turbid water when it rains a lot. Especially, since the agricultural area of Imha basin is mainly located in river boundary, Imha reservoir has suffered from turbid water by soil erosion. Therefore, it is important to estimate the influence of soil erosion to establish efficient management of water-pollutant buffering zone for the reduction of turbid water. By applying GIS-based RUSLE model, this study can acquire 12.23% that is the ratio of soil erosion in water-pollutant buffering zone and is higher than area-ratio (9.95%) of water-pollutant buffering zone. This is why the area-ratio of agricultural district (27.24%) in water-pollutant buffering zone is higher than the area-ratio of agricultural district (14.96%) in Imha basin. Also as the result of soil erosion in sub-basin, Daegok basin shows highest soil erosion in water-pollutant buffering zone, second is Banbyeon_10 basin and last is Seosi basin.

Water Treatment of High Turbid Source by Tubular Ceramic Microfiltration with Periodic Water-back-flushing System

  • Lee, Hyuk-Chan;Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • We performed periodic water-back-flushing using permeate water to minimize membrane fouling to enhance permeate flux in tubular ceramic microfiltration system for water treatment of high turbid source. The filtration time (FT) = 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume $(V_T)\;=\;6.805L$. Also in the result of BT effect at fixed FT = 10 min and BT (back-flushing time) = 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_o$, and we could obtain the highest $V_T\;=\;6.660\;L$. Consequently, FT = 2 min and BT = 6 sec could be the optimal condition in water treatment of high turbid source above 10 NTU. However, FT = 10 min and BT = 20 sec was superior to reduce operating costs because of lower back-flushing frequency. Then the average quality of water treated by our tubular ceramic MF system was turbidity of 0.07 NTU, $COD_{Mn}$ of 1.86 mg/L and $NH_3-N$ of 0.007 mg/L.

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir (탁수조절을 위한 소양호 선택취수설비 설치 효과 분석)

  • Chung, Se Woong;Park, Hyung Seok;Yoon, Sung Wan;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Daily Variations of Water Turbidity and Particle Distribution of High Turbid-Water in Paltang Reservoir, Korea (팔당호에서 수중 탁도의 일 변동과 고탁수의 입자 분포)

  • Shin, Jae-Ki;Kang, Chang-Keun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.257-268
    • /
    • 2003
  • Daily monitoring was conducted to elucidate the changes in turbidity and distribution of particles in the turbid water of a river-type reservoir (Paltang Reservoir) from 1999 to 2001. Water turbidity and the particle distribution of turbid water were principally affected by meteorological factors particularly rainfall patterns and hydrological factors such as inflow and outflow. The mean concentration of turbidity was constant each year, with the concentration of less than 10 NTU accounting for 85%. Seasonal characteristics were remarkable, with winter and spring having < 5 NTU, autumn 5 ${\sim}$ 10 NTU, and summer > 20 NTU. Unlike hydrological changes, maximum turbidity was observed from late July to early August and continuously increased from 1999 to 2001. In particular, the maximum turbidity of reservoirs remarkably increased toward the lower part of reservoir in 2001. Discharge and turbidity increased or decreased slowly in 1999; in contrast, turbidity rapidly increased in the early rainfall period of 2000 and 2001 but later decreased as discharge increased. In the particles of turbid water, clay ingredients were more densely distributed and more dominant in all stations. Of the total particles in turbid water, clay constituted 63.9${\sim}$66.6% and silt 33.4${\sim}$36.1% to account for a combined total of 98.9 ${\sim}$ 100%. Sand made up less than 1.1%. The turbidity of river-type reservoir was also found to be mainly affected by the biomass of plankton in a non-rainfall period. During a rainfall period, however, the quantity and relative ratio of inorganic particles depending on the soil components affected turbidity.