• Title/Summary/Keyword: tunnelling construction projects

Search Result 33, Processing Time 0.019 seconds

Risk Ranking for Tunnelling Construction Projects in Malaysia

  • Ghazali, F.E. Mohamed;Wong, H.C.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Tunnelling has become a preferred method of construction for road and highway projects in countries with a lot of hilly slope geological conditions such as found in Malaysia. However the construction works of a tunnelling project are usually complicated and costly, which consequently impose great risks to the parties involved. This paper identifies the key significant risks and sub-risks for tunnelling construction projects in Malaysia through a case study. Interview has been used as the solitary means to determine the significant risks from contractor's eleven key project personnel who were directly involved in the tunnelling construction such as consultant, construction manager and tunnel engineers. The importance of the risks identified is then prioritised and ranked via the Analytic Hierarchy Process (AHP)'s pairwise comparison approach to determine their criticality towards a successful delivery of project. As a result, three key risks have been identified as significant for the tunnelling case study project, namely health and safety, cost overrun in construction and time overrun in construction. Two sub-risks each of the latter categories, which are cost underestimation and unforeseen events (cost overrun in construction) as well as plant and machinery failure and delay in material delivery (time overrun in construction), have occupied the top five overall risk ranking.

Geotechnical Engineering & Tunnelling Research Division in Korea Institute of Construction Technology - Past and Present (한국건설기술연구원 지반연구실의 어제와 오늘)

  • Kim, Jin-Man;Lee, Ju-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.233-238
    • /
    • 2010
  • The geotechnical engineering research group in Korea Institute of Construction Technology(KICT), which was first started as a small sub-division of the civil research group in KICT, became an independent research cluster with nearly 90 researchers including 25 doctors(Ph.Ds). Our geotechnical engineering research group has developed to be the best research center related to geotechnical engineering in Korea in terms of number of budget of projects performed annually. As a reaction to the rapid changes of domestic and international issues regarding geotechnical practices, our group established long-term plans which will lead national research projects. For the successful and efficient research and technology development, the group is subdivided by several specialty-divisions. The divisions under the geotechnical engineering research group are tunnels and underground structures, slopes and embankments, geo-environment, foundations, soil reinforcements, and constructions in extremely cold regions. Our research scopes includes planning, site investigation, design, construction, maintenance and management. The geotechnical engineering research group is continuously and successfully examining and analyzing the most recent trends of technology and is predicting and focusing on the researches of newly-developing fields; therefore, the group has been a leading research group in geotechnical engineering nationally.

  • PDF

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).

Designing TBMs for subsea tunnels

  • Duhme, Ruben;Tatzki, Thorsten
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.587-596
    • /
    • 2015
  • Recent years have shown great advances in the feasibility of long subsea tunnels. Projects such as the Channel Tunnel, the Stoerebelt Tunnel or the Bosporus Crossing have pushed the boundaries of TBM tunneling technology and fueled the work on feasibility studies for even more challenging projects such as crossing the Qiongzhou or Gibraltar Straits. There are numerous geotechnical challenges such as wide variations of ground conditions, high operation pressures or long tunnel distances and finally geological uncertainties which must be solved in order to attempt such projects. Several operational challenges such as large muck quantities interventions under difficult conditions and long transport distances also have to be tackled. TBM manufacturer and construction industry have developed a number of approaches to these challenges which point into the right technical direction and have been proven successfully in recent experiences. Their further development will allow attempting several megaprojects which are currently under discussion.

Present Status and Future Vision of EIA for Railroad Construction Projects (철도건설사업 환경영향평가의 현황과 과제)

  • Lee Hyun-Woo;Lee Young-Joon;Park Young Min;Yoon Mikyung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.296-302
    • /
    • 2004
  • After the Rio declaration on environment and development in 1992, developed countries are undertaking 'environmentally sustainable transportation (EST)' projects. To meet the needs for EST, current transportation policies in Korea are rapidly reforming and one of its concerns is modernizing and upgrading railway freight system. Planning new railroad construction projects is increasing and subsequent environmental impact assessment (EIA) demands improvements, especially in both the EIA and decision making systems. In this paper, we discuss the present status of EIA for railroad construction projects, especially, by analyzing the EIA documents accumulated for last six years. The EIA for railroad construction projects .accounts for only $4.9\%$ of total project EIAs during 1998-2003. However, the portion is gradually increasing. Major environmental concerns for EIA in railroad construction projects were geomorphological and ecological changes, protection of rare organisms, air pollution, water quality, wast management, noise, etc. We also compared the characteristics of environmental impacts of railroad construction with those of vehicle road construction. The result shows that railroad construction usually requires 3${\~}$4 times longer tunnels and bridges for a given length than vehicle road construction. In addition, the amounts of geomorphological and ecological changes (road-cutting, embankment, devegetation, etc.) in railroad construction were generally less than $40\%$ of those in vehicle road construction. In order to develop environmentally friendly railway systems, monitoring studies for environmental impacts of railroads such as habitat fragmentation and road kills, dispersal of alien plants, tunnelling effects on groundwater and vegetation, and noise impacts are highly required.

  • PDF

Design and Construction Problems of NATN Tunnel Emerged from Seoul Subway Construction (서울 지하철 건설에서 조명된 NATM 터널의 설계 및 시공상의 문제점)

  • 정명근;박광준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.15-20
    • /
    • 1993
  • NATM becomes one of the major methods of tunnel construction, such as that of subways and highways. However, a number of design and construction problems have been noticed and reported from the recent large-scale tunnelling projects. Some of them are presented and discussed in this report in order to call an attention to these problems and provide a sound basis for the improvement of current problems.

  • PDF

Environmental Impact Assessment and Environmental Management of Railways (I) (철도사업 환경영향평가와 환경관리(I))

  • Lee, Hyun-Woo;Lee, Young-Joon;Park, Young Min;Lee, Jeongho;Yoon, Mikyung
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.295-305
    • /
    • 2004
  • After the Rio declaration on environment and development in 1992, developed countries are undertaking "environmentally sustainable transportation (EST)" projects. To meet the needs for EST, current transportation policies in Korea are rapidly reforming and one of its concerns is modernizing and upgrading railway freight system. Planning new railroad construction projects is increasing and subsequent environmental impact assessment (EIA) demands improvements, especially in both the EIA and decision making systems. In this paper, we discuss the present status of EIA for railroad construction projects, especially, by analyzing the EIA documents for the last six years. The EIA for railroad construction projects accounts for only 4.9% of total 918 project EIAs during 1998-2003, and the portion is gradually increasing. Major environmental concerns for EIA in railroad construction projects were geomorphological and ecological changes, protection of rare organisms, air pollution, water pollution, waste management, and noise, etc. We compared characteristics of environmental impacts of railroad construction with those of vehicle road construction, based on environmental and construction-planning indicators appeared in Environmental Impact Statements. Railroad construction usually requires longer tunnels and bridges for a given length than those for vehicle road construction. In addition, the amounts of geomorphological and ecological changes (road-cutting, embankment, devegetation, etc.) in railroad construction were generally less than 50% of those in vehicle road construction. To develop environmentally friendly railway systems, monitoring studies for environmental impacts of railroads such as habitat fragmentation and road kills, dispersal of alien plants, tunnelling effects on groundwater and vegetation, and noise impacts are highly recommended.

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.

A Case Study on Design and Construction of Subway Tunnels Underneath Existing Buildings (건물하부 통과를 위한 터널설계 시공사례)

  • 김홍석;조성태
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.225-230
    • /
    • 1994
  • This paper concerns a case study on the design concept, analysis, construction methodology of a subway tunnel excavated in the soft ground beneath an existing building where the distance between the bottom of the building and the crown of the tunnel is separated by about 3 meters only. The silot tunnels are excavated in advance, and side reinforced-concrete walls are installed. Then, main tunnels are excavated with ring cut method. The steel ribs are installed and supported by the side walls made in advance. Between the steel ribs and the side walls, the screw jack is installed to apply prestressing so that settlement can be controlled at minimum. Various in-situ seasurements are made and compared with computed values obtained by numerical methods. By choosing this underpinning method with very caraful construction control, tunnelling projects could be finished successfully without having any damage to the building located very closely to the tunnel crown.

  • PDF