• 제목/요약/키워드: tunneling spectroscopy

검색결과 94건 처리시간 0.032초

내부 광전자방출 분광법을 이용한 Pt/HfO2/p-Si Metal-Insulator-Semiconductor 커패시터의 쇼트키 배리어 분석 (Characterization of the Schottky Barrier Height of the Pt/HfO2/p-type Si MIS Capacitor by Internal Photoemission Spectroscopy)

  • 이상연;서형탁
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.48-52
    • /
    • 2017
  • In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/$HfO_2$/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of $HfO_2$. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/$HfO_2$/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/$HfO_2$/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.

STM을 이용한 Dipyridinium 유기 단분자막의 모폴로지 관찰 및 전기적 특성 연구 (Study on the Mophology Observation and Electrical Properties of Dipyridinium Organic Monolayer Using STM)

  • 이남석;신훈규;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.51-54
    • /
    • 2005
  • In this work, the attempt has been made to investigate the morphology of self-assembled dipyridinium dithioacetate on Au(111) substrate by Scanning Tunneling Microscopy(STM). Also, we measured electrical properties(I-V) using Scanning Tunneling Spectroscopy(STS). Sample used in this experiment is dipyridinium dithioacetate, which contains thiol functional group, this structure that can be self-assembled easily to Au(111) substrate. The self-assembly procedure was used for two different concentrations, 0.5 mM/ml and 1 mM/ml. Dilute density of sample by 0.5 mM/ml, 1 mM/ml and observed dipyridinium dithioacetate's image by STM after self-assembled on Au(111) substrate. The structure of STM tip-SAMs-Au(111) substrate has been used measurement for electrical properties(I-V) using STS. The current-voltage(I-V) measurement result, observed negative differential resistance(NDR) properties.

Binding Structures of Diatomic Molecules to Co-Porphyrins on Au(111) Studied by Scanning Tunneling Microscopy

  • Lee, Soon-Hyeong;Kim, Ho-Won;Jeon, Jeong-Heum;Jang, Won-Jun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.130-130
    • /
    • 2012
  • Axial bindings of diatomic molecules to metalloporphyrins involve in the dynamic processes of biological functions such as respiration, neurotransmission, and photosynthesis. The binding reactions are also useful in sensor applications and in control of molecular spins in metalloporphyrins for spintronic applications. Here, we present the binding structures of diatomic molecules to surface- supported Co-porphyrins studied using scanning tunneling microscopy. Upon gasexposure, three-lobed structures of Co-porphyrins transformed to bright ring shapes on Au(111), whereas H2-porphyrins of dark rings remained intact. The bright rings are explained by the structures of reaction complexes where a diatomic ligand, tilted away from the axis normal to the porphyrin plane, is under precession. Our results are consistent with previous bulk experiments using X-ray diffraction and nuclear magnetic resonance spectroscopy.

  • PDF

PECVD에 의한 DLC 박막의 성장과 그 특성 조사 (The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization)

  • 조재원;김태환;김대욱;최성수
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.248-254
    • /
    • 1998
  • PECVD(Plasma Enhanced Chemical Vapor Deposition) 방법을 이용하여 비정질 고 상 탄소 박막의 하나인 유사 다이아몬드(Diamond-Like-Carbon; DLC) 박막을 증착하였다. FT-IR Spectroscopy와 Raman Scattering 등을 통해 박막의 구조적 특징을 조사하였는데, 박막은 microcrystalline diamond domain과 graphitelike carbon domain들이 수소화된 $sp^3$사 면체 구조의 비정질 탄소에 의해 그물 구조로 연결되어진 것으로 보인다. 이러한 추정은 I-V 특성 조사의 결과와도 좋은 일치를 보이는데, 특히 I-V조사에서는 전류의 갑작스러운 증가가 관측되어졌으며 이것은 graphitelike carbon domin들간의 전자 tunneling 현상으로 이해되어진다. 그리고 대단히 얇은 탄소 박막에 대한 Raman산란 조사에서는 증착 초기 상 태에 $\beta$-SiC층이 형성되어지는 것을 확인할 수 있었다.

  • PDF

Novel Scanning Tunneling Spectroscopy for Volatile Adborbates

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.58-58
    • /
    • 2010
  • Reactive or unstable adsorbates are often difficult to study spectroscopically. They may have, for instance, resonance states lying close to the Fermi level, inducing them to desorb or decompose by the probe itself, low-energy tunneling electrons. In order to overcome this limitation, we developed a novel method, which we call x-ramp scan. The method sweeps the bias voltage, with the simutaneous scan along the imaging direction, in a constant current mode. This mapping yields the tip-height variation as a function of bias, or Z(V), at nominally always fresh surface. We applied this method to the investigation of methanol-induced molecular features, attributed to methoxy, found on NiAl(110) surface. These were produced by methanol molecules deposited by a pulse injection method onto the metallic surface. Our study shows adsorbed methoxy are very reactive to the bias voltage, rendering the standard spectroscopy useless. Our new x-ramp scan shows that the decomposition of adsorbates occurs at the sample bias of 3.63 V, and proceeds with the lifetime of a few milliseconds. The details of the method will be provided at the discussion.

  • PDF

Formation and Structure of Self-Assembled Monolayers of Octylthioacetates on Au(111) in Catalytic Tetrabutylammonium Cyanide Solution

  • Park, Tae-Sung;Kang, Hun-Gu;Choi, In-Chang;Chung, Hoe-Il;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.441-444
    • /
    • 2009
  • The formation and structure of self-assembled monolayers (SAMs) by the adsorption of acetyl-protected octylthioacetate (OTA) on Au(111) in a catalytic tetrabutylammonium cyanide (TBACN) solution were examined by means of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Molecular-scale STM imaging revealed that OTA molecules on Au(111) in a pure solvent form disordered SAMs, whereas they form well-ordered SAMs showing a c(4 × 2) structure in a catalytic TBACN solution. XPS and CV measurements also revealed that OTA SAMs on Au(111) formed in a TBACN solution have a stronger chemisorbed peak in the S 2p region at 162 eV and a higher blocking effect compared to OTA SAMs formed in a pure solvent. In this study, we clearly demonstrate that TBACN can be used as an effective deprotecting reagent for obtaining well-ordered SAMs of thioacetyl-protected molecules on gold.

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF