Tunneling Spectroscopy in Organic Cu-Pc/d-wave Superconductor Sunmi Kim^a, Jungyoon E^a, Kiejin Lee^a, and Takayuki Ishbashi ^b a Department of Physics, Sogang University, Seoul, Korea b Faculty of Technology, Tokyo Institute of Agriculture and Technology, Tokyo, Japan The transport properties of an oganine copper (II) phthalocyanine (Cu-Pc)/d-wave superconductor (Or/S) junction have been studied for the application of polaronic quasiparticle injection three-terminal devices. We report the current transport properties of a normal metal/organic conductor/ superconductor tunnel junction as a novel high-T_c superconducting three terminal device. The organic Cu-Pc layer was used for a quasiparticle (QP) injector. The injection of polaronic QP from Cu-Pc interlayer into superconductor Bi₂Sr₂CaCu₂O_{8+δ} (BSCCO) or YBa₂Ca₃O_y (YBCO) thin film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. In case of BSCCO tunnel junction, the observed current gain was over 2.5. The tunneling spectroscopy of a Au/Cu-Pc/BSCCO exhibited a zero bias conductance peak (ZBCP) which may be Andreev reflection at a Cu-Pc due to d-wave superconductor junction. This work was support by KOSEF Joint Research Project under The Korea-Japan Basic Scientific Promotion Program (2000-6-114-01-2) keywords: Organic Copper (II) Phthalocyanine, polaronic quasiparticle injection, nonequilibrium state.