• Title/Summary/Keyword: tunneling magnetoresistance

Search Result 88, Processing Time 0.025 seconds

Variation-tolerant Non-volatile Ternary Content Addressable Memory with Magnetic Tunnel Junction

  • Cho, Dooho;Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.458-464
    • /
    • 2017
  • A magnetic tunnel junction (MTJ) based ternary content addressable memory (TCAM) is proposed which provides non-volatility. A unit cell of the TCAM has two MTJ's and 4.875 transistors, which allows the realization of TCAM in a small area. The equivalent resistance of parallel connected multiple unit cells is compared with the equivalent resistance of parallel connected multiple reference resistance, which provides the averaging effect of the variations of device characteristics. This averaging effect renders the proposed TCAM to be variation-tolerant. Using 65-nm CMOS model parameters, the operation of the proposed TCAM has been evaluated including the Monte-Carlo simulated variations of the device characteristics, the supply voltage variation, and the temperature variation. With the tunneling magnetoresistance ratio (TMR) of 1.5 and all the variations being included, the error probability of the search operation is found to be smaller than 0.033-%.

Sol-Gel Synthesis and Transport Properties of $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$Granular Thin Films

  • Shim, In-Bo;Kim, Sung-Baek;Ahn, Geun-Young;Yun, Sung-Roe;Cho, Young-Suk;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We have used acetic acids ethanol and distilled water as a solvent to synthesize $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$(LSMFO) precursor. Crack-free LSMFO granular polycrystalline thin films have been deposited on thermally oxidized silicon substrates by spin coaling. The dependence of crystallization, surface morphology, magnetic and transport properties on annealing temperature was investigated. With increasing annealing temperature, the metal-semiconductor (insulator) transition temperature and the magnetic moment decrease while the resistivity increases. The lattice constants remain almost unchanged. For LSMFO thin films, spin-dependent interfacial tunneling and/or scattering magnetoresistance were observed. Our results indicate that the annealing temperature is very important in determining the intrinsic and extrinsic magnetotransport properties.

  • PDF

Magnetic Properties of Ni/BN/Co Trilayer Structure: A First Principles Study

  • Hashmi, Arqum;Hong, Jisang
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.201-206
    • /
    • 2015
  • Using the Vienna ab initio simulation package (VASP) incorporating both semiempirical and nonlocal van der Waals interaction, the structural, adsorption, and magnetic properties of Ni/BN/Co systems were investigated. We proposed that the relative spin direction of Ni and Co magnets can be easily tuned, because the total energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) states is small. Despite this feature, very interestingly, both Ni and Co layers manifest half-metallic state, whereas the spacer BN layer becomes weak metal for one monolayer (ML) thickness and an insulating barrier for two ML thicknesses. The half-metallic behavior of the magnetic layers seems very robust, because it is independent of the magnetic coupling between Ni and Co. This finding indicates that the Ni/BN/Co system can be used as a potential candidate for tunneling magnetoresistance system.

Interface Engineering in Quasi-Magnetic Tunnel Junctions with an Organic Barrier

  • Choi, Deung-Jang;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.185-189
    • /
    • 2010
  • Spin polarized tunneling through a hybrid tunnel barrier of a Spin filter (SF) based on a EuO ferro-magnetic semiconductor and an organic semiconductor (OSC) (rubrene in this case) was investigated. For quasi-magnetic tunnel junction (MTJ) structures, such as Co/rubrene/EuO/Al, we observed a strong spin filtering effect of the EuO layer exhibiting I-V curves with high spin polarization (P) of up to 99% measured at 4 K. However, a magnetoresistance (MR) value of 9% was obtained at 4.2 K. The low MR compared to the high P could be attributed to spin scattering caused by structural defects at the interface between the EuO and rubrene, due to nonstoichiometry in the EuO.

Interdiffusion Effect of Inserted Nanolayer in Excange-biased NiFe/FeMn/NiFe Multilayer

  • Kim, S.W.;Kim, J. K.;Lee, K.A.;Kim, B.Y.;Kim, J.H.;Lee, J.Y.;Lee, S.S.;Hwang, D.G.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.160-161
    • /
    • 2002
  • One problem in giant magnetoresistance(GMR) spin valves and magnetic tunneling junctions(MTJ) exchange biased by Mn-based antiferromagnets is the Mn diffusion into the ferromagnetic layer and other layers upon annealing.$^{1-3}$ It seems that Mn diffusion that may occur during annealing has a key role in the exchange biasing. We have fabricated multilayers inserting the nanolayer(NL) between antiferromagnet and ferromagent using ion-beam deposition system to study the diffusion effect for the exchange bias. (omitted)

  • PDF

Magnetic Properties of Mn-substituted Magnetite Thin Films (망간 치환된 마그네타이트 박막의 자기적 특성 연구)

  • Lee, Hee-Jung;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.262-266
    • /
    • 2007
  • Polycrystalline $Mn_xFe_{3-x}O_4$ thin films were synthesized on Si(100) substrates using sol-gel method and the effects of Mn substitution on the structural, magnetic, and magnetotransport properties were analyzed. X-ray diffraction revealed that cubic structure is maintained up to x = 1.78 with increasing lattice constant for increasing x. Such increase of the lattice constant is attributable to the substitution of $Mn^{2+}$ (with larger ionic radius) ions into tetrahedral $Fe^{3+}$(with smaller ionic radius) sites. VSM measurements revealed that $M_s$ does not vary significantly with x, qualitatively explainable by comparing spin magnetic moments of Mn and Fe ions. On the other hand, $H_c$ was found to decrease with increasing x, attributable to the decrease of magnetic anisotropy due to the decrease of $Fe^{2+}$ density through $Mn^{2+}$ substitution. Magnetoresistance (MR) of the $Mn_xFe_{3-x}O_4$ films was found to decrease with increasing x. Analysis of the MR data in comparison with the VSM results gives an indication of the tunneling of spin-polarized carriers through the grain boundaries of the polycrystalline samples at low external field and spin-flip of the carriers at high external field.

Ferromagnetic Resonance of Magnetic Tunnel Junctions with an Exchange Biased Synthetic Ferrimagnetic Reference Layer (교환 바이어스 인위적 준강자성 기준층을 포함한 자기 터널 접합의 강자성 공명)

  • Yoon, Jung-Bum;You, Chun-Yeol;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.121-126
    • /
    • 2011
  • Spin dynamics of magnetic tunnel junctions with free and fixed reference layers is investigated by ferromagnetic resonance micromagnetic simulations. First, in magnetic tunnel junctions with an exchange biased synthetic ferrimagnetic reference layer, a magnetization direction of each layer and the tunneling magnetoresistance are calculated for a DC magnetic field. To investigate the spin exciting modes in magnetic tunnel junctions, we simulate the ferromagnetic resonance frequency spectra with small RF magnetic fields. Exciting modes of the tunneling magnetoresistance calculated by an included angle between free and reference layers is interpreted from those of each layer. Spin exciting modes are different according to a signs of the DC magnetic field. In a negative magnetic field, FMR frequency spectra of free and reference layers are well elucidated by the modified Kittel's equation. However, in a positive magnetic field, there is no simple analytic solution related to FMR frequency spectra due to the coupled modes. Since ferromagnetic layers in magnetic tunnel junctions are interactive each other, careful considerations of the reference and fixed layer as well as the free layer are required for understanding on the spin dynamics of magnetic tunnel junctions with an exchange biased synthetic ferrimagnetic reference layer.

Microstructural and Magnetic Properties of CoFeB/MgO/CoFeB Based Magnetic Tunnel Junction Depending on Capping Layer Materials (Capping층 재료에 따른 CoFeB/MgO/CoFeB 자기터널접합의 미세구조와 자기저항 특성)

  • Chung, Ha-Chang;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.162-165
    • /
    • 2007
  • We investigated the effects of the capping layer materials on the crystallization of the amorphous top-CoFeB (t-CoFeB) electrode and the magnetoresistance properties of the magnetic tunnel junctions (MTJs). When the hcp(002)-textured Ru capping layer was used, the amorphous t-CoFeB was crystallized to bcc-CoFe(110). The CoFe(110)/Ru(002) texture relation can be minimized the lattice mismatch down to 5.6%. However, when the fine polycrystalline but almost amorphous TiAl or amorphous ZrAl were used, the amorphous t-CoFeB was crystallized to bcc-CoFe(002). When the amorphous capping materials were used, the evolution of the t-CoFeB texture was affected mainly by the MgO(001) texture. Consequently, the M ratios of the annealed MTJ capped with the ZrAl and TiAl (72.7 and 71.8%) are relatively higher than that of the MTJ with Ru capping layer (46.7%). In conclusions, the texture evolution of the amorphous t-CoFeB during the post deposition annealing could be controlled by the crystallinity of the adjacent capping layer and in turn, it affects the TMR ratio of MTJs.

Magnetoresistance and Structural Properties of the Magnetic Tunnel Junction with Ternary Oxide Barrier (삼원계 산화 절연층을 가진 자기터널접합의 자기·구조적 특성에 관한 연구)

  • Park, Sung-Min;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.231-235
    • /
    • 2005
  • We studied the microstructural evolution of ZrTM-Al (TM=Nb and Ti) alloy films, MR and electrical properties of the MTJ with $ZrTM-AlO_x$ barrier as a function of Zr/TM ratio. We observed that the ternary-oxide barrier reduced the TMR ratio due mainly to the structural defects such as the surface roughness. The change in TMR ratio and $V_h$ with Zr/TM ratio exactly corresponds to the systematic changes in the microstructural variation. Although the MTJ with ternary oxide reduced the TMR and the electrical stabilities, the junction resistances decreased as the Ti and Nb concentration increased due to the band-gap reduction caused by the formation of extra bands

Rutile Ti1-xCoxO2-δ p-type Diluted Magnetic Semiconductor Thin Films

  • Seong, Nak-Jin;Yoon, Soon-Gil;Cho, Young-Hoon;Jung, Myung-Hwa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An attempting to produce a p-type diluted magnetic semiconductor (DMS) using $Ti_{1-x}Co_xO_{2-\delta}-based$ thin films was made by suitable control of the deposition parameters including deposition temperature, deposition pressure, and doping level using a pulsed laser deposition method. T$Ti_{0.97}Co_{0.03}O_{2-\delta}-based$ (TCO) films deposited at $500^{\circ}C$ at a pressure of $5\times10^{-6}$ Torr showed an anomalous Hall effect with p-type characteristics. On the other hand, films deposited at $700^{\circ}C$ at $5\times10^{-6}$ Torr showed n-type behaviors by a decreased solubility of cobalt. The charge carrier concentration in the p-type TCO films was approximately $7.9\times10^{22}/cm^3$ at 300 K and the anomalous Hall effect in the p-type TCO films was controlled by a side-jump scattering mechanism. The magnetoresistance (MR), measured at 5 K in p-type TCO films showed a positive behavior in an applied magnetic field and the MR ratio was approximately 3.5 %. The successful preparation of p-type DMS using the TCO films has the potential for use in magnetic tunneling junction devices.