DOI QR코드

DOI QR Code

Magnetic Properties of Ni/BN/Co Trilayer Structure: A First Principles Study

  • Hashmi, Arqum (Department of Physics, Pukyong National University) ;
  • Hong, Jisang (Department of Physics, Pukyong National University)
  • Received : 2015.06.22
  • Accepted : 2015.07.31
  • Published : 2015.09.30

Abstract

Using the Vienna ab initio simulation package (VASP) incorporating both semiempirical and nonlocal van der Waals interaction, the structural, adsorption, and magnetic properties of Ni/BN/Co systems were investigated. We proposed that the relative spin direction of Ni and Co magnets can be easily tuned, because the total energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) states is small. Despite this feature, very interestingly, both Ni and Co layers manifest half-metallic state, whereas the spacer BN layer becomes weak metal for one monolayer (ML) thickness and an insulating barrier for two ML thicknesses. The half-metallic behavior of the magnetic layers seems very robust, because it is independent of the magnetic coupling between Ni and Co. This finding indicates that the Ni/BN/Co system can be used as a potential candidate for tunneling magnetoresistance system.

Keywords

References

  1. J.-G. (Jimmy) Zhu and C. Park, Materials Today 9, 36 (2006).
  2. C. Heiliger, P. Zahn, and I. Mertig, Materials Today 9, 46 (2006).
  3. O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008). https://doi.org/10.1103/PhysRevLett.100.047209
  4. F. Muoz-Rojas, J. Fernndez-Rossier, and J. J. Palacios, Phys. Rev. Lett. 102, 136810 (2009). https://doi.org/10.1103/PhysRevLett.102.136810
  5. O. V. Yazyev, Nano Lett. 8, 1011 (2008). https://doi.org/10.1021/nl072667q
  6. A. B. Preobrajenski, A. S. Vinogradov, and N. Mrtensson, Surface Science 582, 21 (2005). https://doi.org/10.1016/j.susc.2005.02.047
  7. M. Morscher, M. Corso, T. Greber, and J. Osterwalder, Surface Science 600, 3280 (2006). https://doi.org/10.1016/j.susc.2006.06.016
  8. A. B. Preobrajenski, A. S. Vinogradov, M. L. Ng, E. avar, R. Westerstrm, A. Mikkelsen, E. Lundgren, and N. Mrtensson, Phys. Rev. B 75, 245412 (2007). https://doi.org/10.1103/PhysRevB.75.245412
  9. M. Corso, W. Auwrter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Science 303, 217 (2004). https://doi.org/10.1126/science.1091979
  10. M. Corso, T. Greber, and J. Osterwalder, Surface Science 577, L78 (2005). https://doi.org/10.1016/j.susc.2005.01.015
  11. C. Oshima and A. Nagashima, J. Phys.: Condens. Matter 9, 1 (1997). https://doi.org/10.1088/0953-8984/9/1/004
  12. R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 78, 045409 (2008). https://doi.org/10.1103/PhysRevB.78.045409
  13. J. G. Daz, Y. Ding, R. Koitz, A. P. Seitsonen, M. Iannuzzi, and J. Hutter, Theor. Chem. Acc. 132, 1 (2013).
  14. M. Chen, Y.-J. Zhao, J.-H. Liao, and X.-B. Yang, Phys. Rev. B 86, 045459 (2012). https://doi.org/10.1103/PhysRevB.86.045459
  15. A. B. Preobrajenski, M. A. Nesterov, M. L. Ng, A. S. Vinogradov, and N. Martensson, Chem. Phys. Lett. 446, 119 (2007). https://doi.org/10.1016/j.cplett.2007.08.028
  16. O. V. Yazyev and A. Pasquarello, Phys. Rev. B 80, 035408 (2009). https://doi.org/10.1103/PhysRevB.80.035408
  17. M. L. Hu, Z. Yu, K. W. Zhang, L. Z. Sun, and J. X. Zhong, J. Phys. Chem. C 115, 8260 (2011). https://doi.org/10.1021/jp109971r
  18. A. Hashmi and J. Hong, J. Magn. Magn. Mater. 355, 7 (2014). https://doi.org/10.1016/j.jmmm.2013.11.036
  19. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997). https://doi.org/10.1126/science.278.5338.653
  20. W. Han, W. Mickelson, and A. Zettl, Appl. Phys. Lett. 81, 1110 (2002). https://doi.org/10.1063/1.1498494
  21. T. Kawasaki, T. Ichimura, H. Kishimoto, A. A. Akbar, T. Ogawa, and C. Oshima, Surf. Rev. Lett. 9, 1459 (2002). https://doi.org/10.1142/S0218625X02003883
  22. S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495
  23. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010). https://doi.org/10.1103/PhysRevB.82.081101
  24. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401
  25. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098
  26. J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys. Condens. Mater. 22, 022201 (2010). https://doi.org/10.1088/0953-8984/22/2/022201
  27. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  28. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  29. Y. G. Zhouab, X. T. Zua, and F. Gaob, Solid. State. Comm. 151, 883 (2011). https://doi.org/10.1016/j.ssc.2011.04.001