• Title/Summary/Keyword: tunnel support

Search Result 536, Processing Time 0.026 seconds

Stability Assessment on the Final Pit Slope in S Limestone Mine (S 석회석광산에서의 최종 잔벽사면의 안정성 평가)

  • Sun, Woo-Choon;Lee, Yun-Su;Kim, Hyun-Woo;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • The slopes of open-pit mine are typically designed without considering the reinforcement and support method due to the economical efficiency. However, the long-term stability of final pit slope is needed in some case, therefore the appropriate measures that can improve the stability are required. In this study, the field survey and laboratory test were carried out in S limestone mine. The stability assessment of final pit slope was performed through the stereographic projection method, SMR, and numerical analysis. And countermeasures for stabilization were proposed. The results of analysis show that full scale of slope failure is not expected but the failures of bench slope scale are likely to occur. In oder to increase the stability of bench slope, we suggested the remedial methods as follows: excavating the final pit slope by pre-splitting blasting, placing the wide berm in the intermediate bench slope and installing the horizontal drainage hole in the place of local ground water runoff.

A Numerical Study on the Behavior of Shotcrete Reinforced by Various Steel Supports (강재로 보강된 숏크리트 거동의 수치해석적 연구)

  • Lee, Sang-Don;Park, Yeon-Jun;Lim, Doo-Chul;Son, Jeong-Hun;You, Kwang-Ho;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.226-238
    • /
    • 2008
  • The steel ribs which are used to enhance the supporting capability of the shotcrete are estimated to be very effective, but their characteristics depending on the types of steel support are not well understood enough to be considered in the design stage. This paper describes the behavior of the shotcrete reinforced by various types of steel supports. Through flexural toughness test, major strength parameters such as flexural tensile strength, equivalent flexural tensile strength and residual tensile strength were obtained and used in the numerical analyses. Test results show that steel rebar was not as dependable as H-beam or lattice girder but close examination of the test results revealed that the specimen was failed in shear because of the shorter span than desired. Therefore tests on the properly dimensioned specimens are necessary for valid evaluation of the steel rebar reinforced shotcrete. In the first set of numerical stability analyses, shotcrete and steel supports were modelled separately. Then compared with the second set of analyses in which shotcrete and steel supports were regarded as a composite material. The two results coincided reasonably and this equivalent model turned out to be useful.

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

A Correlation Analysis on Earth Pressure and Subgrade Stiffness in Bridge Abutment Transition Zone (철도 교량접속부의 토압과 노반강도와의 상관관계)

  • Kim, Jin-Hwan;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.647-655
    • /
    • 2016
  • The construction of high speed railways and improvement projects of for conventional railways require straight railway lines of railway, which leads to an increase of bridge and tunnel construction. Transition zones in railways means that the track support stiffness is variedvaries in over short ranges. Sspecial attention is required in theose transition zones since because instability of train running in train and irregularities of track irregularities are can frequently occurred. Typical transition zones are between bridges and earthworks and between tunnels and earthworks. On In a transition zone, a bridge abutment transition zone has many problems in with various causes. In this paper, fundamental problems of bridge abutment transition zones is are analyzed to enhance the understanding about of bridge abutment transition zones. Suggestions for improving problems in the transition zones are proposed.

Application of New Type Accelerator for High Quality Shotcrete (고품질 숏크리트 개발을 위한 새로운 급결제 적용)

  • Park, Hae-Geun;Lee, Myeong-Sub;Kim, Jea-Kwon;Jung, Myung-Keun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2002
  • From the early 1980's, the New Austrian Tunnelling Method (NATM) has been developed as one of the standard tunnelling methods in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate (waterglass) accelerator was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength, and flexural toughness were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Quantitative assessment of depth and extent of notch brittle failure in deep tunneling using inferential statistical analysis

  • Lee, Kang-Hyun;Lee, In-Mo;Shin, Young-Jin
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.201-206
    • /
    • 2020
  • A stress-induced brittle failure in deep tunneling generates spalling and slabbing, eventually causing a v-shaped notch formation. An empirical relationship for the depth of the notch to the maximum tangential stress assuming an equivalent circular cross-section was proposed (Martin et al. 1999). While this empirical approach has been well recognized in the industry and used as a design guideline in many projects, its applicability to a non-circular opening is worth revisiting due to the use of equivalent circular profile. Moreover, even though the extent of the notch also contributes to notch failure, it has not been estimated to date. When the estimate of both the depth and the extent of notch are combined, a practical and economically justifiable support design can be achieved. In this study, a new methodology to assess the depth as well as the extent of notch failure is developed. Field data and numerical simulations using the Cohesion Weakening Frictional Strengthening (CWFS) model were collected and correlated with the three most commonly accepted failure criteria (σ13, Dismaxc, σdevcm). For the numerical analyses, the D-shaped tunnel was used since most civil tunnels are built to this profile. Inferential statistical analysis is applied to predict the failure range with a 95% confidence level. Considering its accuracy and simplicity, the new correlation can be used as an enhanced version of failure assessment.

Calibration System for Three-Cup Anemometers (현장용 교정 장치를 이용한 3-컵 풍속계의 교정 방법)

  • Chun, Se-Jong;Lee, Saeng-Hee;Choi, Yong-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.325-331
    • /
    • 2010
  • Three-cup anemometers are popular devices for measuring wind speeds in automated weather stations, environmental monitoring systems, and wind turbines. Cup anemometers usually suffer from lack of long-term stability owing to the wear of the bearing systems that support the rotational parts. The bearing systems are susceptible to external pollutants, vibrations, and gusts. Therefore, these anemometers have to be calibrated regularly to maintain the desired characteristics for measuring wind speed. In the present study, a new in-situ calibration system to help reduce cost and save time by calibrating the cup anemometers at the installation site is proposed. A portable in-situ calibrator was fabricated. After the characteristics of this calibrator were verified, it was used to calibrate cup anemometers. Some of the calibration results were compared with the data obtained by wind tunnel testing.

Leveraging Proxy Mobile IPv6 with SDN

  • Raza, Syed M.;Kim, Dongsoo S.;Shin, DongRyeol;Choo, Hyunseung
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.460-475
    • /
    • 2016
  • The existing Proxy Mobile IPv6 suffers from a long handover latency which in turn causes significant packet loss that is unacceptable for seamless realtime services such as multimedia streaming. This paper proposes an OpenFlow-enabled proxy mobile IPv6 (OF-PMIPv6) in which the control of access gateways is centralized at an OpenFlow controller of a foreign network. The proposed OF-PMIPv6 separates the control path from the data path by performing the mobility control at the controller, whereas the data path remains direct between a mobile access gateway and a local mobility anchor in an IP tunnel form. A group of simple OpenFlow-enabled access gateways performs link-layer control and monitoring activities to support a comprehensive mobility of mobile nodes, and communicates with the controller through the standard OpenFlow protocol. The controller performs network-layer mobility control on behalf of mobile access gateways and communicates with the local mobility anchor in the Proxy Mobile IPv6 domain. Benefiting from the centralized view and information, the controller caches the authentication and configuration information and reuses it to significantly reduce the handover latency. An analytical analysis of the proposed OF-PMIPv6 reactive and proactive handover schemes shows 43% and 121% reduction in the handover latency, respectively, for highly utilized network. The results gathered from the OF-PMIPv6 testbed suggest similar performance improvements.

Performance Evaluation of Improved Fast PMIPv6-Based Network Mobility for Intelligent Transportation Systems

  • Ryu, Seonggeun;Choi, Ji-Woong;Park, Kyung-Joon
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.142-152
    • /
    • 2013
  • The network mobility basic support (NEMO BS) protocol has been investigated to provide Internet connectivity for a group of nodes, which is suitable for intelligent transportation systems (ITS) applications. NEMO BS often increases the traffic load and handover latency because it is designed on the basis of mobile Internet protocol version 6 (MIPv6). Therefore, schemes combining proxy MIPv6 with NEMO (P-NEMO) have emerged to solve these problems. However, these schemes still suffer from packet loss and long handover latency during handover. Fast P-NEMO (FP-NEMO) has emerged to prevent these problems. Although the FP-NEMO accelerates handover, it can cause a serious tunneling burden between the mobile access gateways (MAGs) during handover. This problem becomes more critical as the traffic between the MAGs increases. Therefore, we propose a scheme for designing an improved FP-NEMO (IFP-NEMO) to eliminate the tunneling burden by registering a new address in advance. When the registration is completed before the layer 2 handover, the packets are forwarded to the new MAG directly and thereby the IFP-NEMO avoids the use of the tunnel between the MAGs during handover. For the evaluation of the performance of the IFP-NEMO compared with the FP-NEMO, we develop an analytical framework for fast handovers on the basis of P-NEMO. Finally, we demonstrate that the IFP-NEMO outperforms the FP-NEMO through numerical results.

Design and Performance Analysis of Propeller for Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3의 프로펠러 설계 및 성능해석)

  • Park, Donghun;Hwang, Seungjae;Kim, Sanggon;Kim, Cheolwan;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.759-768
    • /
    • 2016
  • Design and performance analysis of propeller for solar-powered HALE UAV, EAV-3 are conducted. Experiment points of design variables are obtained by using Design of Experiment(DOE) and Kriging meta-model is generated for objective and constraints function. The geometry of propeller is designed by evaluating the response surface with requirement and restrictions. The validity of the design is verified by meta-model based optimization. Computational analyses are carried out by using commercial CFD code and the results are compared with those from a design code and wind tunnel test. The results showed good agreement with predictions of the design code at the design altitude. Also, it is confirmed that the blockage effect due to the measurement device and support strut is included in the test data and the results including this effect compare well with the test data.