• Title/Summary/Keyword: tunnel influence zone

Search Result 72, Processing Time 0.023 seconds

Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.187-200
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been conducted to investigate the behaviour of pre-existing single piles in response to adjacent tunnelling by considering the tunnel face pressures and the relative locations of the pile tips with respect to the tunnel. Via numerical modelling, the effect of the face pressures on the pile behaviour has been analysed. In addition, the analyses have concentrated on the ground settlements, the pile head settlements and the shear stress transfer mechanism at the pile-soil interface. The settlements of the pile directly above the tunnel crown (with a vertical distance between the pile tip and the tunnel crown of 0.25D, where D is the tunnel diameter) with a face pressure of 50% of the in situ horizontal soil stress at the tunnel springline decreased by approximately 38% compared to the corresponding pile settlements with the minimum face pressure, namely, 25% of the in situ horizontal soil stress at the tunnel springline. Furthermore, the smaller the face pressure is, the larger the tunnelling-induced ground movements, the axial pile forces and the interface shear stresses. The ground settlements and the pile settlements were heavily affected by the face pressures and the positions of the pile tip with respect to the tunnel. When the piles were inside the tunnel influence zone, tensile forces were induced on piles, while compressive pile forces were expected to develop for piles that are outside the influence zone and on the boundary. In addition, the computed results have been compared with relevant previous studies that were reported in the literature. The behaviour of the piles that is triggered by adjacent tunnelling has been extensively examined and analysed by considering the several key features in substantial detail.

An Assessment of Safety Zone for Mountain Tunnel Portal Using Strength Reduction Technique (강도감소법을 이용한 산악터널 갱구부의 안전영역 평가)

  • Hong, Chang-Soo;Hwang, Dae-Jin;Lee, Kang-Ho;You, Kwang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.925-930
    • /
    • 2006
  • During the excavation of a tunnel portal, failure zones around the tunnel heading occur and also the ground supports itself. In a portal, its location and the ground characteristic have a great influence on the stability of the tunnel. Therefore, the failure mechanism of a tunnel heading and how to assess the stability of the tunnel are very important. In this paper, the numerical analyses were executed to evaluate the safety factor using strength reduction technique. The influence area of an excavation was also predicted through a case study in which no-support case and support case with the Pattern P-6 were compared in terms of the ground class and the shear strain.

  • PDF

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil

  • Lee, Cheol-Ju;Jeon, Young-Jin;Kim, Sung-Hee;Park, Inn-Joon
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.553-570
    • /
    • 2016
  • A series of three-dimensional (3D) parametric finite element analyses have been performed to study the influence of the relative locations of pile tips with regards to the tunnel position on the behaviour of single piles and pile groups to adjacent tunnelling in weathered soil. When the pile tips are inside the influence zone, which considers the relative pile tip location with respect to the tunnel position, tunnelling-induced pile head settlements are larger than those computed from the Greenfield condition. However, when the pile tips are outside the influence zone, a reverse trend is obtained. When the pile tips are inside the influence zone, the tunnelling-induced tensile pile forces mobilised, but when the pile tips are outside the influence zone, compressive pile forces are induced because of tunnelling, depending on the shear stress transfer mechanism at the pile-soil interface. For piles connected to a cap, tensile and compressive forces are mobilised at the top of the centre and side piles, respectively. It has been shown that the increases in the tunnelling-induced pile head settlements have resulted in reductions of the apparent factor of safety up to approximately 43% when the pile tips are inside the influence zone, therefore severely affecting the serviceability of the piles. The pile behaviour, when considering the location of the pile tips with regards to the tunnel, has been analysed in great detail by taking the tunnelling-induced pile head settlements, axial pile forces, apparent factor of safety of the piles and shear transfer mechanism into account.

Behavior of tunnel adjacent to weak zone by using scaled model test (축소모형실험을 이용한 연약대층 근접 터널의 거동)

  • Lee, Dong-Seok;Joen, Jae-Hyun;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.231-246
    • /
    • 2012
  • Recently, the construction of tunnel frequently involves neighboring weak ground conditions. In this case, the stabilized ground could be relaxed by the excavation of tunnel. This will create issues in terms of stability of tunnel. Major factors determining the stability of tunnel can be the direction (angle) of weak zone, the distance between tunnel and boundary of weak zone and so on. In this study, by quantifying the displacement and crack propagation during the excavation of tunnel constructed neighboring weak zone, the influence of the direction of weak zone and the distance between tunnel and boundary of weak zone on the mechanical behavior of tunnel is investigated. A series of experimental scaled model tests by changing the direction of weak zone and the distance between tunnel and boundary of weak zone, are performed and analyzed under the condition of homogeneous material. The results show that as the angle between ground surface and boundary of weak zone moves from horizontal to perpendicular plane, displacement near tunnel increases. An increased distance between tunnel and boundary of weak zone induces displacements near tunnel to decrease and stabilizes beyond a certain level of distance. These findings verify and extend the earlier studies quantitatively. Finally, an appropriate distance between tunnel and boundary of weak zone according to the angle of weak zone is justified. This fundamental insight provides the basis for a more rational design of tunnel neighboring weak ground conditions.

Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel

  • Ding, Lujun;Liu, Yuhong
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • The finite difference software Flac3D is used to study the influence of tunnel burial depth, tunnel diameter and lateral pressure coefficient of original rock stress on the stress and deformation of tunnel surrounding rock under sandstone condition. The results show that the maximum shear stress, the radius of the plastic zone and the maximum displacement in the surrounding rock increase with the increase of the diameter of the tunnel. When the lateral pressure coefficient is 1, it is most favorable for surrounding rock and lining structure, with the increase or decrease of lateral pressure coefficient, the maximum principal stress, surrounding displacement and plastic zone range of surrounding rock and lining show a sharp increase trend, the plastic zone on the lining increases with the increase of buried depth.

Relation between Groundwater Inflow into the Waterway Tunnel and Hydrogeological Characteristics in Hyeonseo-myeon, Cheongsong-gun, Korea (청송군 현서면 일대 도수로터널내 지하수 유입량과 수리지질 특성의 관련성)

  • 박재현;함세영;성익환;이병대;정재열
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.141-152
    • /
    • 2001
  • The waterway tunnel zone (length 1,484m) in the Hyeonseo-myeon area that is a part of Yeongcheon dam waterway tunnel has been studied to characterize the relationship between groundwater inflow into the waterway tunnel and hydrogeologic characteristics. The effects of sandstone thickness in the tunnel section. fracture density, fracture aperture and spacing, fault zone width and hydraulic conductivity on the early inflow (inflow prior to the lining and grouting) are investigated. The relationship between fracture density and hydraulic conductivity is also considered. The result of the study suggests that fault zone width has the greatest effect on groundwater inflow into the tunnel, and sandstone thickness, hydraulic conductivity and fracture density in order shows an influence on the inflow.

  • PDF

Influence of limestone cavity on tunnel stability (석회암 공동이 터널의 안정에 미치는 영향)

  • Jin, Seong-Kyu;Yang, Moon-Sang;Choi, Deog-Chan;Park, Kwang-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • This study is focused on establishing influence zone caused by tunnelling in limestone site. Therefore, the numerical analysis using the FLAC2D was performed considering various locations and magnitudes of cavities. To reduce the stress concentration, the shape of cavities was designed to ellipse. This parametric study reveals that the cavities located at crown part and edge part of tunnel greatly have influenced on stability of tunnel. The effect of distance between tunnel and cavity which is larger than 1-0D (Tunnel diameter) dose not directly related to stability of tunnel, but the nearer a cavity location was, the larger displacement and stress of reinforcement occured within 0.25D.

  • PDF

Three-dimensional Stability Analysis for an Underground Disposal Research Tunnel (지하처분연구시설에 대한 3차원 터널 안정성 해석)

  • 권상기;조원진
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2004
  • If an underground research facility for the validation of disposal concept is constructed in KAERI, it is expected to have a thick weathered zone and varying surface topology. In this study, the influence of different geological conditions, tunnel slope, tunnel size, and sequential excavation is investigated by 3D mechanical analysis using FLAC3D. Around the tunnel, it is not expected to develop any plastic zone and the maximum stress might be as high as 5 ㎫. The maximum compressive stress will be developed at about 20 m to e dead end of the tunnel. There is no difference on stress and displacement distributions between the cases with and without sequential excavation. It is expected to have stress release in the roof and floor after the excavation of the tunnel. There is no significant influence of weathered zone size, tunnel size, and tunnel slope on the stress and displacement distributions. The modeling for the intersection shows the minimum factor of safety is above 3, when the in situ stress ratio K is 3. From the study, it was possible to demonstrate that the small scale disposal research tunnel in KAERI will be mechanically stable.

A Study on the Stability Analysis Technique of the Railroad Tunnel passing through the Abandoned Mining Area (폐광지역을 통과하는 철도터널의 안정성 검토에 관한 연구)

  • Shin Hyeon-Kon;Bae Jun-Hyun;Lee Moo-Il;Lee Jun-Seok
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1083-1088
    • /
    • 2004
  • Several possibilities on the stability analysis of the railroad tunnels passing through the abandoned mining area are considered in this paper. Previous works on the influence zone due to cavities are investigated to study the effect of the safety deterioration near the cavities which are normally unknown to the engineers. Additional works on the numerical analysis of the influential zone are also performed in 3D space. The praximity of railroad tunnel and unexpected cavities is critical to influence the stability of railroad tunnel under construction. Futhermore, the study on the influence of underground condition like joint and faults should be significantly controlled under both design and construction stage.

  • PDF