• Title/Summary/Keyword: tungsten carbide

Search Result 319, Processing Time 0.025 seconds

Mechanical Characterization of Elastomeric Polymer Through Micro Instrumented Indentation Technique (마이크로 압입시험기법의 응용을 통한 탄성체 고분자 소재의 역학적 특성화 및 계면 접합에너지 평가기법 연구)

  • Lee, Gyu-Jei;Kang, Seung-Kyun;Kang, In-Geun;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.951-959
    • /
    • 2007
  • In this study, the Johnson-Kendall-Roberts(JKR) theory was combined with the instrumented indentation technique (IIT) to evaluate work of adhesion and modulus of elastomeric polymer. Indentation test was used to obtain the load-displacement data for contacts between Tungsten Carbide indenter and elastomeric polymer. And the JKR contact model, contrived to take viscoelastic effects of polymer into account, was applied to compensate the contact area and the elastic modulus which Hertzian contact model would underestimate and overestimate, respectively. Besides, we could obtain the thermodynamic work of adhesion by considering the surface energy in this contact model. In order to define the relation between JKR contact area and applied load without optical measuring of contact area, we used the relation between applied load and contact stiffness by examining the correlation between JKR contact area and stiffness through dimensional analysis with 14 kinds of elastomeric polymer. From this work, it could be demonstrated that the interfacial work of adhesion and elastic modulus of compliant polymer can be obtained from a simple instrumented indentation testing without area measurement, and provided as the main algorithm of compliant polymer characterization.

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

Characteristics of Micro Groove grinding for the Mold of PDP Barrier Ribs (PDP 격벽용 금형의 마이크로 홈 연삭 특성)

  • 조인호;정상철;박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.963-966
    • /
    • 2000
  • Plasma display panel (PDP) is a type of flat panel display utilizing the light emission that is produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalk from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring stripes of glass-material wall. In this paper. Stripes of grooves of which width 48 um, depth 124um, pitch 274um was acquired by machining the material of WC with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120 nm, 287 nm. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of curvature of bottom was 7.75 ${\mu}{\textrm}{m}$. This results meets the specification for barrier ribs of 50 inch XGA PDP. Forming the glass paste will be followed by using mold in the near future.

  • PDF

Comminution-Classification of Clay-type Minerals by Fluid Energy Mill (Fluid Energy Mill에 의한 점토성 무기소재 미립화 분급기술 소고)

  • 김태욱;김만영;정필조;이주완
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.47-53
    • /
    • 1985
  • In view of innovated utilization of Korean clay resources conventional techniques for pulverization are reviewed in comparison with fluid energy milling processes of fluidized-bed type. Throughout experiment indigenous halloysite ores (white grade) after usual pretreatment are employed as typical sample. It is evidenced that grinding by means of porcelain ball mills has limitation in reducing clay particles to less than 10${\mu}{\textrm}{m}$ in diameter regardless of whether it is processed in dry or wet. Upon use of tungsten carbide bull mill particulation to submicron sizes could be effected with relative ease but severe coloration in grey is attended indicating metallic contamination possibly from friction of the grinding apparatus itself. In contrast the modified fluid en ergy milling enables particulation to $\leq$10${\mu}{\textrm}{m}$ in diameter with simultaneous classification int olimited ranges of particle size distributions. Since this technique is in principle based on the interparticle collisions rather than on the frictions between particles and mill surfaces minimum impurity attendance would be an additional advantage. Evidence leads to the conclusion that the fluidized-bed type milling is regarded as highly effective in puverization as well as fractionation of the clay minerals under examination. This is especially so in contemplating high-value and/or high-purity clay products.

  • PDF

Measurement of the Wear Amount of WC-coated Excavator Spacer using the PTA Process to Improve Wear Resistance by Using Reflective Digital Holography (반사형 디지털 홀로그래피를 이용한 내마모성 향상을 위한 공법이 적용된 PTA 굴착기의 초경 코팅 스페이서의 마모량 측정)

  • Shin, Ju-Yeop;Lim, Hyeong-Jong;Lee, Hang-Seo;Kim, Han-Sub;Jung, Hyun-Chul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • The spacer, which is located between the bucket and the arm of an excavator, has a role in preventing damage to the excavator arm during excavation work. When the durability of the spacer is increased, the lifetime of the arm can be extended and the processing costs can be reduced. To increase the durability of the spacer, tungsten carbide (WC) coating was applied on the surface of a spacer using the plasma transferred arc (PTA) process. The confirm the durability, a wear test using a pin-on disk type of wear testing machine was done under the given conditions and the wear amount on the surface of a tested specimen was measured using reflective digital holography. The results were compared with that of ALPHA-STEP.

Development of Electrode Guide of Super-drill EDM and Electrical Discharge Machining of Small Hole for High Precision Semiconductor Die (초정밀 반도체 금형 제작을 위한 슈퍼드릴 방전가공기 전극가이드 개발과 미세홀 방전가공)

  • Park, Chan-Hae;Kim, Jong-Up;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though very hard materials and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM process is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods. In this experimental thesis, the super EDM drilling was developed for high precision semiconductor die steel and for minimization of leadframe width. It was possible to development of EDM drilling machine for high precision semiconductor die with the electrode guide and its modelling and stress analysis. The development of electrode with the copper pipe type was conducted to drill the hole from the diameter of 0.1mm to 3.0mm with the error of from 0.02mm to 0.12mm. From the SEM and EDX analysis, the entrance of the EDM drill was found the resolidification of not only the component of tungsten but also the component of copper.

  • PDF

Mechanical Properties of TiAlSiN films Coated by Hybrid Process (하이브리드 공정으로 제조한 TiAlSiN 박막의 특성)

  • Song, Min-A;Yang, Ji-Hoon;Jung, Jae-Hun;Kim, Sung-Hwan;Jeong, Jae-In
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.4
    • /
    • pp.174-180
    • /
    • 2014
  • In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.

A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses (비구면 유리렌즈 열변형 보정에 관한 연구)

  • Lee, Dong-Kil;Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Hak-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.

Development of a New Process for Welding a WC Layer to the Round Surface of a Plain Carbon Steel (초경접합 신공법 개발)

  • 박우진;김기열;이범주;조정환;박채규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.257-262
    • /
    • 1999
  • The economic loss arisen from the abrasion wear have been increasing at every industrial field. To reduce the economic loss we developed a new process, which is named MAHa process(Metallic Adhesives for HArdening). MAHa process is a process to weld tungsten carbide(WC) to the surface of a plain carbon steel so that it may stay longer under the severe abrasive environment. The depth of the WC layer ranges from 0.5 mm to 5 m. Compared with the conventional technology, arc-augmented welding which bonds WC on the flat surface only, MAHa process has the merits that it can make a robust WC layer on the round or wave- shaped surface also. How to turn the WC powder into a flexible mat is the key technology of the MAHa process. We invented new polymer materials to accomplish such a goal and both the MAHa process and the invented materials were applied for patents. For the application, the inner wall of elbow of Concrete Pump Truck(CPT) was maharized(MAHa process-treated) and the new WC layer on the inner wall was made successfully. The elbow was equipped to a CPT.

  • PDF

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료의 가공기술에 관한 연구)

  • Lee Seok-Woo;Choi Heon-Jong;Yi Bong-Gu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF