Reducing response of buildings during earthquakes by mass dampers, has been examined in many articles and books. Nowadays, many researchers are trying to realistically examine this type of dampers by new methods of performance. In this paper, for the better study of tuned mass damper (TMD), two schematic models are presented for a passive TMD with softening stiffness (softening TMD) and a passive TMD with hardening stiffness (hardening TMD). Then by modeling and analysis of the damper on a single degree of freedom (SDOF) structure and an 11-story steel building, the dampers performance was evaluated. State space was used for damper and structure modeling and to solve nonlinear equations, the Newton-Raphson method was used. The results show that when the structure is subjected to the Chi-Chi earthquake, response of the sixth floor in the system without TMD reduces 54.0% in comparison to the structure with softening TMD. This percentage of reduction for hardening TMD is 55.0%. Also for the Tabas earthquake, reduction in the RMS acceleration of the sixth floor in the system with hardening TMD is 96.2% more than the structure without TMD. This percentage of reduction for hardening TMD is 96.3%.
Proceedings of the Computational Structural Engineering Institute Conference
/
1992.04a
/
pp.26-29
/
1992
Modern tall buildings are subject to wind induced oscillations. Those oscillations can cause discomfort to the occupants. To control these motions, tuned mass dampers have been used. In this paper, component node synthesis, based on Lagrange multipliers formulation. is applied to the along-wind motion of tall buildings with multiple tuned mass dampers. Spectral densities of accelerations of top floor are compared by changing the numbers and locations of tuned mass dampers. It is found that multiple tuned mass dampers can be more effective than single tuned mass damper in reducing the acceleration response.
Lee, Chien-Shen;Love, J. Shayne;Haskett, Trevor C.;Robinson, Jamieson K.
International Journal of High-Rise Buildings
/
v.10
no.2
/
pp.93-97
/
2021
Supplementary damping systems, such as tuned mass dampers (TMDs) and tuned sloshing dampers (TSDs) - also known as tuned liquid dampers (TLDs) - have been successfully employed to reduce building motion during wind events. A design of a damping system consisting of a TMD and two TSDs performing in unison has been developed for a tall building in Taiwan to reduce wind-induced motion. The architecturally exposed TMD will also be featured as a tourist attraction. The dual-purpose TSD tanks will perform as fire suppression water storage tanks. Linearized equivalent mechanical TSD and TMD models are coupled to the structure to simulate the multi-degree of freedom system response. Frequency response curves for the structure with and without the damping system are created to evaluate the performance of the damping system. The performance of the combined TMD-TSD system is evaluated against a conventional TMD system by computing the effective damping produced by each system. The proposed system is found to have superior performance in acceleration reduction. The combined TMD-TSD system is an effective and affordable means to reduce the wind-induced resonant response of tall buildings.
Journal of the Earthquake Engineering Society of Korea
/
v.10
no.1
s.47
/
pp.51-62
/
2006
To dale, lots of types of tuned mass dampers are developed and investigated to reduce dynamic responses of a structure due to various causes. In this study, control performance of semi-active tuned mass damper(STMD), that can change the damping of tuned mass damper in real time based on structural responses, was investigated with respect to various types of excitation employing numerical simulation. Skyhook control algorithm was used to appropriately modulate the damping ratio of semi-active damper that composes STMD. The control effectiveness of a STMD under harmonic and random excitation were evaluated using a single-degree-of-freedom (SDOF) structure in comparison with a conventional passive tuned mass damper (TMD). The robustness of a STMD and a passive TMD were compared along with the variation of the mass of a SDOF structure. The control performance of STMD using magnetorheological (MR) damper was also investigated in this study. Based on the numerical studios, it was shown that the control effectiveness of the STMD was significantly superior to that of a passive TMD with respect to harmonic and random excitation.
The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.
Proceedings of the Computational Structural Engineering Institute Conference
/
1993.04a
/
pp.95-99
/
1993
Conventional tuned mass dampers are located on the top floor of tall buildings, which reduce the fundamental mode response of buildings. Higher modes may have a greater contribution toward the acceleration response of tall buildings. To reduce this, additional tuned mass dampers are required and could be substituted as building equipments. This paper shows, with a numerical ezample, how the lecate tuned mass damper in order to reduce the higher mode response effectively
Mohammed Fasil;R. Sajeeb;Nizar A. Assi;Muhammad K. Rahman
Earthquakes and Structures
/
v.24
no.1
/
pp.21-36
/
2023
Structural vibrations generated by earthquakes and wind loads can be controlled by varying the structural parameters such as mass, stiffness, damping ratio, and geometry and providing a certain amount of passive or active reaction forces. A Double-Tuned Mass Dampers (DTMDs) system, which is simple and more effective than the conventional single tuned mass damper (TMD) system for vibration mitigation is presented. Two TMDs tuned to the first two natural frequencies were used to control vibrations. Experimental investigations were carried out on a three degrees-of-freedom frame model to investigate the effectiveness of DTMDs systems in controlling displacements, accelerations, and base shear. Numerical models were developed and validated against the experimental results. The validation showed a good match between the experimental and numerical results. The validated model was employed to investigate the behavior of a five degrees-of-freedom shear building structure, wherein mass dampers with different mass ratios were considered. The effectiveness of the DTMDs system was investigated for harmonic, seismic, and white noise base excitations. The proposed system was capable of significantly reducing the story displacements, accelerations, and base shears at the first and second natural frequencies, as compared to conventional single TMD.
Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
Wind and Structures
/
v.30
no.6
/
pp.663-678
/
2020
Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.
Min, Kyung-Won;Park, Ji-Hoon;Kim, Hong-Jin;Kim, Hyung-Sub;Jung, Ran
Proceedings of the Computational Structural Engineering Institute Conference
/
2003.10a
/
pp.541-548
/
2003
The design and performance of HTMD(hybrid tuned mass dampers) are evaluated for the response control of a md excited 76-story benchmark building. When a HTMD utilizes active control forces, the optimally designed TMD (Tuned Mass Damper) generates the modal separation at the first natural frequency resulting in difficulties for applying active control forces additionally. Whereas, the modal separation does no occur if the un is designed with the non-optimally designed TMD is used. Therefore, the response control performance of the HTMD with a non-optimally designed TMD is better that one with an optimally designed TMD. Further, the non-optimally designed TMD has an advantage of smaller stroke than the optimally designed TMD relieving the difficulty of limited strokes.
Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.