• Title/Summary/Keyword: tumorigenesis

Search Result 428, Processing Time 0.027 seconds

Overexpression of microRNA-612 Restrains the Growth, Invasion, and Tumorigenesis of Melanoma Cells by Targeting Espin

  • Zhu, Ying;Zhang, Hao-liang;Wang, Qi-ying;Chen, Min-jing;Liu, Lin-bo
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • microRNA (miR)-612 shows anticancer activity in several types of cancers, yet its function in melanoma is still unclear. This study was undertaken to investigate the expression of miR-612 and its biological relevance in melanoma cell growth, invasion, and tumorigenesis. The expression and prognostic significance of miR-612 in melanoma were examined. The effects of miR-612 overexpression on cell proliferation, colony formation, tumorigenesis, and invasion were determined. Rescue experiments were conducted to identify the functional target gene(s) of miR-612. miR-612 was significantly downregulated in melanoma tissues compared to adjacent normal tissues. Low miR-612 expression was significantly associated with melanoma thickness, lymph node metastasis, and shorter overall, and disease-free survival of patients. Overexpression of miR-612 significantly decreased cell proliferation, colony formation, and invasion of SK-MEL-28 and A375 melanoma cells. In vivo tumorigenic studies confirmed that miR-612 overexpression retarded the growth of A375 xenograft tumors, which was coupled with a decline in the percentage of Ki-67-positive proliferating cells. Mechanistically, miR-612 targeted Espin in melanoma cells. Overexpression of Espin counteracted the suppressive effects of miR-612 on melanoma cell proliferation, invasion, and tumorigenesis. A significant inverse correlation (r = -0.376, P = 0.018) was observed between miR-612 and Espin protein expression in melanoma tissues. In addition, overexpression of miR-612 and knockdown of Espin significantly increased the sensitivity of melanoma cells to doxorubicin. Collectively, miR-612 suppresses the aggressive phenotype of melanoma cells through downregulation of Espin. Delivery of miR-612 may represent a novel therapeutic strategy against melanoma.

Study on mechanism of multistep hepatotumorigenesis in rat : Bio-indices on hepatic tumorigenesis (간암의 다단계 발생기전에 관한 연구: 종양형성 과정에서의 생체지표)

  • Kang, Chung-boo;Kim, Chi-kyeong;Song, Seung-hee;Ha, Woo-song
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.583-589
    • /
    • 2001
  • To estalish bio-indices for detection of the development of multistep hepatotumorigenesis, rats were fed water containing 0.01% diethylnitrosamine (DEN) ad libitum for 13-14 weeks. Hepatocellular carcinoma was developed by treatment with DEN, DEN only was able to induce hepatic tumors in rats without any other cocarcinogen. Compared to control group, liver cytosol protein concentration in all treated grous was significantly decreased (p<0.05). From week to week, $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) activity was increased and the highest activity was observed on the 12th week (p<0.05). In addition, the urine biopterin concentration was also significantly increased compared to control groups (p<0.05) in a time course manner. These results indicated that $20{\alpha}$-HSD activity, urine biopterin and liver cytosol protein concentration might be very useful maker to hepatic tumorigenesis.

  • PDF

Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis

  • Zong, Xiangyun;Yang, Hongjian;Yu, Yang;Zou, Dehong;Ling, Zhiqiang;He, Xiangming;Meng, Xuli
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.595-600
    • /
    • 2011
  • Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.

Tumor-associated autoantibodies as diagnostic and prognostic biomarkers

  • Heo, Chang-Kyu;Bahk, Young Yil;Cho, Eun-Wie
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.677-685
    • /
    • 2012
  • In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of 'immuno-proteomics', which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed.

USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization

  • Park, Jae Min;Lee, Jae Eun;Park, Chan Mi;Kim, Jung Hwa
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.

Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism

  • Jeong, Seung Min;Haigis, Marcia C.
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.750-758
    • /
    • 2015
  • Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.

Alternative Splicing and Its Impact as a Cancer Diagnostic Marker

  • Kim, Yun-Ji;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.74-80
    • /
    • 2012
  • Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteomes by alternative splicing could affect cancer cells to grow and survive, leading to metastasis. Cancer cells that are transformed by aberrant and uncontrolled mechanisms could produce alternative splicing to maintain and spread them continuously. Splicing variants in various cancers represent crucial roles for tumorigenesis. Taken together, the identification of alternative spliced variants as biomarkers to distinguish between normal and cancer cells could cast light on tumorigenesis.

Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

  • Solomon, David A.;Kim, Jung-Sik;Waldman, Todd
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.299-310
    • /
    • 2014
  • Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations.

TM4SF5-mediated protein-protein networks and tumorigenic roles

  • Lee, Jung Weon
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.483-487
    • /
    • 2014
  • Transmembrane 4 L six family member 5 (TM4SF5), as a membrane glycoprotein with 4 transmembrane domains, is similar to the tetraspanins in terms of membrane topology and plays important roles in tumorigenesis and tumor metastasis. Especially, TM4SF5 appears to form a massive protein-protein complex consisting of diverse membrane proteins and/or receptors in addition to cytosolic signaling molecules to regulate their signaling activities during the pathological processes. TM4SF5 is shown to interact with integrins ${\alpha}2$, ${\alpha}5$, and ${\beta}1$, EGFR, IL6R, CD151, focal adhesion kinase (FAK), and c-Src. This review focuses on the significance of the interactions with regards to TM4SF5-positive tumorigenesis and metastasis.