Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0329

USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization  

Park, Jae Min (Department of Biological Sciences, Inha University)
Lee, Jae Eun (Department of Biological Sciences, Inha University)
Park, Chan Mi (Department of Biological Sciences, Inha University)
Kim, Jung Hwa (Department of Biological Sciences, Inha University)
Abstract
Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.
Keywords
EZH2; prostate cancer cells; protein stability; USP44;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao, Q., Yu, J., Dhanasekaran, S.M., Kim, J.H., Mani, R.S., Tomlins, S.A., Mehra, R., Laxman, B., Cao, X., Yu, J., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274-7284.   DOI
2 Chen, H., Tu, S.W., and Hsieh, J.T. (2005). Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437-22444.   DOI
3 Chen, Y., Zhou, B., and Chen, D. (2017). USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco. Targets Ther. 10, 681-689.   DOI
4 de Bie, P., Zaaroor-Regev, D., and Ciechanover, A. (2010). Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem. Biophys. Res. Commun. 400, 389-395.   DOI
5 Fuchs, G., Shema, E., Vesterman, R., Kotler, E., Wolchinsky, Z., Wilder, S., Golomb, L., Pribluda, A., Zhang, F., Haj-Yahya, M., et al. (2012). RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol. Cell 46, 662-673.   DOI
6 Gibaja, V., Shen, F., Harari, J., Korn, J., Ruddy, D., Saenz-Vash, V., Zhai, H., Rejtar, T., Paris, C.G., Yu, Z., et al. (2016). Development of secondary mutations in wild-type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors. Oncogene. 35, 558-566.   DOI
7 Holland, A.J., and Cleveland, D.W. (2012). The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J. Clin. Invest. 122, 4325-4328.   DOI
8 Jin, X., Yang, C., Fan, P., Xiao, J., Zhang, W., Zhan, S., Liu, T., Wang, D., and Wu, H. (2017). CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. J. Biol. Chem. 292, 6269-6280.   DOI
9 Hu, S., Yu, L., Li, Z., Shen, Y., Wang, J., Cai, J., Xiao, L., and Wang, Z. (2010). Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo. Cancer Biol. Ther. 10, 788-795.   DOI
10 Jang, M.J., Baek, S.H., and Kim, J.H. (2011). UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. 302, 128-135.   DOI
11 Le, H., Zeng, F., Xu, L., Liu, X., and Huang, Y. (2013). The role of CD133 expression in the carcinogenesis and prognosis of patients with lung cancer. Molecular Medicine Reports 8, 1511-1518.   DOI
12 Kim, K.H., Kim, W., Howard, T.P., Vazquez, F., Tsherniak, A., Wu, J.N., Wang, W., Haswell, J.R., Walensky, L.D., Hahn, W.C., et al. (2015). SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491-1496.   DOI
13 Kim, K.H., and Roberts, C.W. (2016). Targeting EZH2 in cancer. Nat. Med. 22, 128-134.   DOI
14 Lan, X., Atanassov, B.S., Li, W., Zhang, Y., Florens, L., Mohan, R.D., Galardy, P.J., Washburn, M.P., Workman, J.L., and Dent, S.Y.R. (2016). USP44 Is an Integral Component of N-CoR that Contributes to Gene Repression by Deubiquitinating Histone H2B. Cell Rep. 17, 2382-2393.   DOI
15 Lee, S.T., Li, Z., Wu, Z., Aau, M., Guan, P., Karuturi, R.K., Liou, Y.C., and Yu, Q. (2011). Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers. Mol. Cell 43, 798-810.   DOI
16 McCabe, M.T., Graves, A.P., Ganji, G., Diaz, E., Halsey, W.S., Jiang, Y., Smitheman, K.N., Ott, H.M., Pappalardi, M.B., Allen, K.E., et al. (2012). Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl. Acad. Sci. USA 109, 2989-2994.   DOI
17 Liu, T., Sun, B., Zhao, X., Li, Y., Zhao, X., Liu, Y., Yao, Z., Gu, Q., Dong, X., Shao, B., et al. (2015). $USP44^{+}$ Cancer Stem Cell Subclones Contribute to Breast Cancer Aggressiveness by Promoting Vasculogenic Mimicry. Mol. Cancer Ther. 14, 2121-2131.   DOI
18 Lu, W., Liu, S., Li, B., Xie, Y., Izban, M.G., Ballard, B.R., Sathyanarayana, S.A., Adunyah, S.E., Matusik, R.J., and Chen, Z. (2017). SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene 36, 1364-1373.   DOI
19 Majer, C.R., Jin, L., Scott, M.P., Knutson, S.K., Kuntz, K.W., Keilhack, H., Smith, J.J., Moyer, M.P., Richon, V.M., Copeland, R.A., et al. (2012). A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 586, 3448-3451.   DOI
20 Margueron, R., and Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature 469, 343-349.   DOI
21 Melling, N., Thomsen, E., Tsourlakis, M.C., Kluth, M., Hube-Magg, C., Minner, S., Koop, C., Graefen, M., Heinzer, H., Wittmer, C., et al. (2015). Overexpression of enhancer of zeste homolog 2 (EZH2) characterizes an aggressive subset of prostate cancers and predicts patient prognosis independently from pre- and postoperatively assessed clinicopathological parameters. Carcinogenesis 36, 1333-1340.   DOI
22 Morin, R.D., Johnson, N.A., Severson, T.M., Mungall, A.J., An, J., Goya, R., Paul, J.E., Boyle, M., Woolcock, B.W., Kuchenbauer, F., et al. (2010). Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181-185.   DOI
23 Stegmeier, F., Rape, M., Draviam, V.M., Nalepa, G., Sowa, M.E., Ang, X.L., McDonald, E.R., 3rd, Li, M.Z., Hannon, G.J., Sorger, P.K., et al. (2007). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876-881.   DOI
24 Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., et al. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249-253.   DOI
25 Sahasrabuddhe, A.A., Chen, X., Chung, F., Velusamy, T., Lim, M.S., and Elenitoba-Johnson, K.S. (2015). Oncogenic Y641 mutations in EZH2 prevent Jak2/beta-TrCP-mediated degradation. Oncogene 34, 445-454.   DOI
26 Sloane, M.A., Wong, J.W., Perera, D., Nunez, A.C., Pimanda, J.E., Hawkins, N.J., Sieber, O.M., Bourke, M.J., Hesson, L.B., and Ward, R.L. (2014). Epigenetic inactivation of the candidate tumor suppressor USP44 is a frequent and early event in colorectal neoplasia. Epigenetics 9, 1092-1100.   DOI
27 Sneeringer, C.J., Scott, M.P., Kuntz, K.W., Knutson, S.K., Pollock, R.M., Richon, V.M., and Copeland, R.A. (2010). Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human Bcell lymphomas. Proc. Natl. Acad. Sci. USA 107, 20980-20985.   DOI
28 Sowa, M.E., Bennett, E.J., Gygi, S.P., and Harper, J.W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389-403.   DOI
29 Swarts, D.R., Henfling, M.E., Van Neste, L., van Suylen, R.J., Dingemans, A.M., Dinjens, W.N., Haesevoets, A., Rudelius, M., Thunnissen, E., Volante, M., et al. (2013). CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 19, 2197-2207.   DOI
30 Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442-454.   DOI
31 Yu, J., Cao, Q., Mehra, R., Laxman, B., Yu, J., Tomlins, S.A., Creighton, C.J., Dhanasekaran, S.M., Shen, R., Chen, G., et al. (2007). Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12, 419-431.   DOI
32 Varambally, S., Dhanasekaran, S.M., Zhou, M., Barrette, T.R., Kumar-Sinha, C., Sanda, M.G., Ghosh, D., Pienta, K.J., Sewalt, R.G., Otte, A.P., et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624-629.   DOI
33 Xu, K., Wu, Z.J., Groner, A.C., He, H.H., Cai, C., Lis, R.T., Wu, X., Stack, E.C., Loda, M., Liu, T., et al. (2012). EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465-1469.   DOI
34 Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J.X., Shetuni, B., and Barsky, S.H. (2010). ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene 29, 1451-1462.   DOI
35 Yu, J., Cao, Q., Yu, J., Wu, L., Dallol, A., Li, J., Chen, G., Grasso, C., Cao, X., Lonigro, R.J., et al. (2010). The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29, 5370-5380.   DOI
36 Yu, Y.L., Chou, R.H., Shyu, W.C., Hsieh, S.C., Wu, C.S., Chiang, S.Y., Chang, W.J., Chen, J.N., Tseng, Y.J., Lin, Y.H., et al. (2013). Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol. Med. 5, 531-547.   DOI
37 Zhang, P., Xiao, Z., Wang, S., Zhang, M., Wei, Y., Hang, Q., Kim, J., Yao, F., Rodriguez-Aguayo, C., Ton, B.N., et al. (2018). ZRANB1 Is an EZH2 Deubiquitinase and a Potential Therapeutic Target in Breast Cancer. Cell Rep. 23, 823-837.   DOI
38 Zou, Y., Qiu, G., Jiang, L., Cai, Z., Sun, W., Hu, H., Lu, C., Jin, W., and Hu, G. (2017). Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget 8, 58231-58246.   DOI
39 Zingg, D., Debbache, J., Schaefer, S.M., Tuncer, E., Frommel, S.C., Cheng, P., Arenas-Ramirez, N., Haeusel, J., Zhang, Y., Bonalli, M., et al. (2015). The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat. Commun. 6, 6051.   DOI
40 Zoabi, M., Sadeh, R., de Bie, P., Marquez, V.E. and Ciechanover, A. (2011). PRAJA1 is a ubiquitin ligase for the polycomb repressive complex 2 proteins. Biochem. Biophys. Res. Commun. 408, 393-398.   DOI