DOI QR코드

DOI QR Code

Alternative Splicing and Its Impact as a Cancer Diagnostic Marker

  • Kim, Yun-Ji (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2012.05.01
  • Accepted : 2012.05.21
  • Published : 2012.06.30

Abstract

Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteomes by alternative splicing could affect cancer cells to grow and survive, leading to metastasis. Cancer cells that are transformed by aberrant and uncontrolled mechanisms could produce alternative splicing to maintain and spread them continuously. Splicing variants in various cancers represent crucial roles for tumorigenesis. Taken together, the identification of alternative spliced variants as biomarkers to distinguish between normal and cancer cells could cast light on tumorigenesis.

Keywords

References

  1. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM. Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 2007;8:349-357. https://doi.org/10.1016/S1470-2045(07)70104-3
  2. Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009;136:701-718. https://doi.org/10.1016/j.cell.2009.02.009
  3. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005;6:386-398. https://doi.org/10.1038/nrm1645
  4. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010;463:457-463. https://doi.org/10.1038/nature08909
  5. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456:470-476. https://doi.org/10.1038/nature07509
  6. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008;40:1413-1415. https://doi.org/10.1038/ng.259
  7. Brinkman BM. Splice variants as cancer biomarkers. Clin Biochem 2004;37:584-594. https://doi.org/10.1016/j.clinbiochem.2004.05.015
  8. Skotheim RI, Nees M. Alternative splicing in cancer: noise, functional, or systematic? Int J Biochem Cell Biol 2007;39:1432-1449. https://doi.org/10.1016/j.biocel.2007.02.016
  9. Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 2007;76:51-74. https://doi.org/10.1146/annurev.biochem.76.050106.093909
  10. Cáceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 2002;18:186-193. https://doi.org/10.1016/S0168-9525(01)02626-9
  11. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002;3:285-298. https://doi.org/10.1038/nrg775
  12. Wang J, Zhang J, Li K, Zhao W, Cui Q. SpliceDisease database: linking RNA splicing and disease. Nucleic Acids Res 2012;40:D1055-D1059. https://doi.org/10.1093/nar/gkr1171
  13. Venables JP. Unbalanced alternative splicing and its significance in cancer. Bioessays 2006;28:378-386. https://doi.org/10.1002/bies.20390
  14. Venables JP. Aberrant and alternative splicing in cancer. Cancer Res 2004;64:7647-7654. https://doi.org/10.1158/0008-5472.CAN-04-1910
  15. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003;72:291-336. https://doi.org/10.1146/annurev.biochem.72.121801.161720
  16. López-Bigas N, Ouzounis CA. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res 2004;32:3108-3114. https://doi.org/10.1093/nar/gkh605
  17. López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005;579:1900-1903. https://doi.org/10.1016/j.febslet.2005.02.047
  18. Weisschuh N, Wissinger B, Gramer E. A splice site mutation in the PAX6 gene which induces exon skipping causes autosomal dominant inherited aniridia. Mol Vis 2012;18:751-757.
  19. Kurahashi H, Takami K, Oue T, Kusafuka T, Okada A, Tawa A, et al. Biallelic inactivation of the APC gene in hepatoblastoma. Cancer Res 1995;55:5007-5011.
  20. Agrawal A, Hamvas A, Cole FS, Wambach JA, Wegner D, Coghill C, et al. An intronic ABCA3 mutation that is responsible for respiratory disease. Pediatr Res 2012;71:633-637. https://doi.org/10.1038/pr.2012.21
  21. Jackson IJ. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 1991;19:3795-3798. https://doi.org/10.1093/nar/19.14.3795
  22. Xue J, Rask L. The unusual 5' splicing border GC is used in myrosinase genes of the Brassicaceae. Plant Mol Biol 1995;29:167-171. https://doi.org/10.1007/BF00019128
  23. Burset M, Seledtsov IA, Solovyev VV. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 2000;28:4364-4375. https://doi.org/10.1093/nar/28.21.4364
  24. Xiong F, Gao J, Li J, Liu Y, Feng G, Fang W, et al. Noncanonical and canonical splice sites: a novel mutation at the rare noncanonical splice-donor cut site (IVS4 + 1A > G) of SEDL causes variable splicing isoforms in X-linked spondyloepiphyseal dysplasia tarda. Eur J Hum Genet 2009;17:510-516. https://doi.org/10.1038/ejhg.2008.219
  25. Kim E, Goren A, Ast G. Insights into the connection between cancer and alternative splicing. Trends Genet 2008;24:7-10. https://doi.org/10.1016/j.tig.2007.10.001
  26. Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 2011;32:1569-1577. https://doi.org/10.1093/carcin/bgr124
  27. Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 2002;418:236-243. https://doi.org/10.1038/418236a
  28. Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993; 62:289-321. https://doi.org/10.1146/annurev.bi.62.070193.001445
  29. Tacke R, Manley JL. Functions of SR and Tra2 proteins in pre-mRNA splicing regulation. Proc Soc Exp Biol Med 1999;220:59-63.
  30. Colapietro P, Gervasini C, Natacci F, Rossi L, Riva P, Larizza L. NF1 exon 7 skipping and sequence alterations in exonic splice enhancers (ESEs) in a neurofibromatosis 1 patient. Hum Genet 2003;113:551-554. https://doi.org/10.1007/s00439-003-1009-2
  31. Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005;20:881-890. https://doi.org/10.1016/j.molcel.2005.10.026
  32. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 2009;16:990-995. https://doi.org/10.1038/nsmb.1659
  33. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science 2010;327:996-1000. https://doi.org/10.1126/science.1184208
  34. Zhou Y, Lu Y, Tian W. Epigenetic features are significantly associated with alternative splicing. BMC Genomics 2012;13:123. https://doi.org/10.1186/1471-2164-13-123
  35. Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 2009;19:1732-1741. https://doi.org/10.1101/gr.092353.109
  36. Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 2009;41:376-381. https://doi.org/10.1038/ng.322
  37. Wilhelm BT, Marguerat S, Aligianni S, Codlin S, Watt S, Bähler J. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast. Genome Biol 2011;12:R82. https://doi.org/10.1186/gb-2011-12-8-r82
  38. Gunderson FQ, Merkhofer EC, Johnson TL. Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements. Proc Natl Acad Sci U S A 2011;108:2004-2009. https://doi.org/10.1073/pnas.1011982108
  39. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011;479:74-79. https://doi.org/10.1038/nature10442
  40. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2010;24:2343-2364. https://doi.org/10.1101/gad.1973010
  41. Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009;16:670-676. https://doi.org/10.1038/nsmb.1608
  42. Stickeler E, Kittrell F, Medina D, Berget SM. Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 1999;18:3574-3582. https://doi.org/10.1038/sj.onc.1202671
  43. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Crit Rev Clin Lab Sci 2002;39:527-579. https://doi.org/10.1080/10408360290795574
  44. Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev 2003;17:419-437. https://doi.org/10.1101/gad.1048803
  45. Kalnina Z, Zayakin P, Silina K, Linē A. Alterations of premRNA splicing in cancer. Genes Chromosomes Cancer 2005;42:342-357. https://doi.org/10.1002/gcc.20156
  46. Okumura N, Yoshida H, Kitagishi Y, Nishimura Y, Matsuda S. Alternative splicings on p53, BRCA1 and PTEN genes involved in breast cancer. Biochem Biophys Res Commun 2011;413:395-399. https://doi.org/10.1016/j.bbrc.2011.08.098
  47. Wei J, Zaika E, Zaika A. p53 family: role of protein isoforms in human cancer. J Nucleic Acids 2012;2012:687359.
  48. Neklason DW, Solomon CH, Dalton AL, Kuwada SK, Burt RW. Intron 4 mutation in APC gene results in splice defect and attenuated FAP phenotype. Fam Cancer 2004;3:35-40.
  49. Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB, et al. Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J Sci Am 1997;3:230-237.
  50. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H. Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 2001;34:55-61. https://doi.org/10.1016/S0168-8278(01)81060-6
  51. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 2004;64:7822-7835. https://doi.org/10.1158/0008-5472.CAN-04-0934
  52. Pritchard-Jones RO, Dunn DB, Qiu Y, Varey AH, Orlando A, Rigby H, et al. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer 2007;97:223-230. https://doi.org/10.1038/sj.bjc.6603839
  53. Bartel F, Taubert H, Harris LC. Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2002;2:9-15.
  54. Bartel F, Harris LC, Wurl P, Taubert H. MDM2 and its splice variant messenger RNAs: expression in tumors and downregulation using antisense oligonucleotides. Mol Cancer Res 2004;2:29-35.
  55. Arvanitis DA, Lianos E, Soulitzis N, Delakas D, Spandidos DA. Deregulation of p73 isoform equilibrium in benign prostate hyperplasia and prostate cancer. Oncol Rep 2004;12:1131-1137.
  56. Line A, Slucka Z, Stengrevics A, Li G, Rees RC. Altered splicing pattern of TACC1 mRNA in gastric cancer. Cancer Genet Cytogenet 2002;139:78-83. https://doi.org/10.1016/S0165-4608(02)00607-6
  57. Kotoula V, Barbanis S, Nikolakaki E, Koufoyannis D, Papadimitriou CS, Karkavelas G. Relative expression of human telomerase catalytic subunit (hTERT) transcripts in astrocytic gliomas. Acta Neuropathol 2004;107:443-451. https://doi.org/10.1007/s00401-004-0832-4
  58. DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat 2009;12:1-7. https://doi.org/10.1016/j.drup.2008.11.001
  59. Li F. Role of survivin and its splice variants in tumorigenesis. Br J Cancer 2005;92:212-216. https://doi.org/10.1038/sj.bjc.6602340
  60. Hu Y, Fang C, Xu Y. The effect of isoforms of the cell polarity protein, human ASIP, on the cell cycle and Fas/FasL-mediated apoptosis in human hepatoma cells. Cell Mol Life Sci 2005;62:1974-1983. https://doi.org/10.1007/s00018-005-5134-z
  61. Barron VA, Lou H. Alternative splicing of the neurofibromatosis type I pre-mRNA. Biosci Rep 2012;32:131-138. https://doi.org/10.1042/BSR20110060
  62. Mohr A, Zwacka RM, Jarmy G, Büneker C, Schrezenmeier H, Döhner K, et al. Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95- mediated apoptosis. Oncogene 2005;24:2421-2429. https://doi.org/10.1038/sj.onc.1208432
  63. Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST. Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 2005;11(2 Pt 1):483-489.
  64. Pettigrew CA, Brown MA. Pre-mRNA splicing aberrations and cancer. Front Biosci 2008;13:1090-1105. https://doi.org/10.2741/2747
  65. Cuperlovic-Culf M, Belacel N, Culf AS, Ouellette RJ. Data analysis of alternative splicing microarrays. Drug Discov Today 2006;11:983-990. https://doi.org/10.1016/j.drudis.2006.09.011
  66. Omenn GS, Yocum AK, Menon R. Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications. Dis Markers 2010;28:241-251. https://doi.org/10.1155/2010/705847

Cited by

  1. Urinary Bladder Cancer Susceptibility Markers. What Do We Know about Functional Mechanisms? vol.14, pp.6, 2013, https://doi.org/10.3390/ijms140612346
  2. Mechanism of alternative splicing and its regulation vol.3, pp.2, 2014, https://doi.org/10.3892/br.2014.407
  3. Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma vol.33, pp.6, 2015, https://doi.org/10.3892/or.2015.3907
  4. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines vol.35, pp.2, 2016, https://doi.org/10.3892/or.2015.4465
  5. Expression of evolutionarily novel genes in tumors vol.11, pp.1, 2016, https://doi.org/10.1186/s13027-016-0077-6
  6. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes vol.35, pp.19, 2016, https://doi.org/10.1038/onc.2015.318
  7. Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing vol.79, pp.2, 2016, https://doi.org/10.4046/trd.2016.79.2.85