• Title/Summary/Keyword: tumor xenograft model

Search Result 105, Processing Time 0.027 seconds

A New Cell Counting Method to Evaluate Anti-tumor Compound Activity

  • Wang, Xue-Jian;Zhang, Xiu-Rong;Zhang, Lei;Li, Qing-Hua;Wang, Lin;Shi, Li-Hong;Fang, Chun-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3397-3401
    • /
    • 2014
  • Determining cell quantity is a common problem in cytology research and anti-tumor drug development. A simple and low-cost method was developed to determine monolayer and adherent-growth cell quantities. The cell nucleus is located in the cytoplasm, and is independent. Thus, the nucleus cannot make contact even if the cell density is heavy. This phenomenon is the foundation of accurate cell-nucleus recognition. The cell nucleus is easily recognizable in images after fluorescent staining because it is independent. A one-to-one relationship exists between the nucleus and the cell; therefore, this method can be used to determine the quantity of proliferating cells. Results indicated that the activity of the histone deacetylase inhibitor Z1 was effective after this method was used. The nude-mouse xenograft model also revealed the potent anti-tumor activity of Z1. This research presents a new anti-tumor-drug evaluation method.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

A New Bioluminescent Rat Prostate Cancer Cell Line: Rapid and Accurate Monitoring of Tumor Growth (효과적인 항암효능측정을 위한 발광 전립선 세포의 개발 및 평가)

  • Lee, Mi-Sook;Jung, Jae-In;Kwon, Seung-Hae;Shim, In-Sop;Hahm, Dae-Hyun;Han, Jeong-Jun;Han, Dae-Seok;Yoonpark, Jung-Han;Her, Song
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1738-1741
    • /
    • 2010
  • Caliper measurements of tumor volume have been widely used in the assessment of tumors in animal models. However, experiments based on caliper data have resulted in unreliable estimates of tumor growth, due to necrotic areas of tumor mass. To overcome this systematic bias, we engineered a new luciferase-expressing rat prostate cancer cell line (MLL-Luc) that produces bioluminescence from viable cancer cells. MLL-Luc cells showed a strong correlation between bioluminescence intensity and cell number ($R^2$=0.99) and also accurately quantified tumor growth, with reduced bioluminescence signals caused by necrotic cells in a subcutaneous MLL-Luc xenograft model. The accurate quantification of tumor growth with bioluminescence imaging (BLI) was confirmed by a better antitumor effect of combination chemotherapy, compared to that based on caliper measurements with a correlation between the bioluminescence signal and tumor volume ($R^2$=0.84). These data suggest that bioluminescent MLL xenografts are a powerful and quantitative tool for monitoring tumor growth and are useful in evaluating the efficacy of anticancer drugs, with less systematic bias.

Comparison of anticancer activities of Korean Red Ginseng-derived fractions

  • Baek, Kwang-Soo;Yi, Young-Su;Son, Young-Jin;Jeong, Deok;Sung, Nak Yoon;Aravinthan, Adithan;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.386-391
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is an ethnopharmacological plant that is traditionally used to improve the body's immune functions and ameliorate the symptoms of various diseases. However, the antitumorigenic effects of KRG and its underlying molecular and cellular mechanisms are not fully understood in terms of its individual components. In this study, in vitro and in vivo antitumorigenic activities of KRG were explored in water extract (WE), saponin fraction (SF), and nonsaponin fraction (NSF). Methods: In vitro antitumorigenic activities of WE, SF, and NSF of KRG were investigated in the C6 glioma cell line using cytotoxicity, migration, and proliferation assays. The underlying molecular mechanisms of KRG fractions were determined by examining the signaling cascades of apoptotic cell death by semiquantitative reverse transcriptase polymerase chain reaction and Western blot analysis. The in vivo antitumorigenic activities of WE, SF, and NSF were investigated in a xenograft mouse model. Results: SF induced apoptotic death of C6 glioma cells and suppressed migration and proliferation of C6 glioma cells, whereas WE and NSF neither induced apoptosis nor suppressed migration of C6 glioma cells. SF downregulated the expression of the anti-apoptotic gene B-cell lymphoma-2 (Bcl-2) and upregulated the expression of the pro-apoptotic gene Bcl-2-associated X protein (BAX) in C6 glioma cells but had no effect on the expression of the p53 tumor-suppressor gene. Moreover, SF treatment resulted in activation of caspase-3 as evidenced by increased levels of cleaved caspase-3. Finally, WE, SF, and NSF exhibited in vivo antitumorigenic activities in the xenograft mouse model by suppressing the growth of grafted CT-26 carcinoma cells without decreasing the animal body weight. Conclusion: These results suggest that WE, SF, and NSF of KRG are able to suppress tumor growth via different molecular and cellular mechanisms, including induction of apoptosis and activation of immune cells.

Effects of Cheongpyesagan-tang and YKK012 on in vitro and in vivo Colon Cancer Cell Growth with and without CPT-11 (청폐사간탕(淸肺瀉肝湯)과 YKK012의 항암제 CPT-11과 병용투여 시 대장암 성장억제에 미치는 효과)

  • Ahn, Hun-Mo;Han, Sang-Yong;Kim, Ji-Hoon;Rho, Tae-Won;Chong, Myong-Soo;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2015
  • Objectives : The aim of this study was to evaluate the antitumor effects of Cheongpyesagan-tang(CST) and YKK012 on colon cancer. Methods : MTT assay was used to evaluate the cytotoxicity of Single herbs and combinations of CST and YKK012 on murine colon cancer cells, Colon 38. To explain effects of apoptosis in colon cancer, we performed the western blot. Effects of CST and YKK012 on antitumor activity of CPT-11 using the murine colon38 allograft tumor in BDF1 mice. Results : Single herbs and combinations of CST and YKK012 was tested in vitro, Rhei Radix (RH) and Scutellariae Radix (SC) and YKK012 showed dose-response cytotoxicity on Colon 38. This might be due to the apoptosis, as we see Bax and Caspase-3, which are apoptotic factors, was expressed in RH and SC treated cells. YKK012 also showed increased expression of Caspase-3. In mouse colorectal cancer xenograft model of colon38 cells, herbal combinations showed tendencies of tumor regression, but was not significant. Furthermore, because toxicity was observed in CST group, we reduced the dose of CST for the next experiment. The anti-tumor effects of herbal combinations were insufficient to be used as single anti-tumor agent. With simultaneous usage of CPT-11, contrary to that CST showed no synergistic effects, YKK012 which was composed by the combination of four $ER{\beta}$ selective herbs, significantly reduced the size of tumor and Bax expression was increased. Conclusions : We suggest YKK012 can be a effective cancer adjuvant therapy with CPT-11 on colon cancer.

ER membrane protein complex subunit 6 (EMC6) is a novel tumor suppressor in gastric cancer

  • Wang, Xiaokun;Xia, Yan;Xu, Chentong;Lin, Xin;Xue, Peng;Zhu, Shijie;Bai, Yun;Chen, Yingyu
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.411-416
    • /
    • 2017
  • The endoplasmic reticulum (ER) membrane protein complex subunit 6 (EMC6) is a novel human autophagy-related molecule. Here, using tissue microarray and immunohistochemistry, we report that EMC6 protein is lost or reduced in glandular cells of patients with gastric adenocarcinoma, compared to normal stomach mucosa. Overexpression of EMC6 in gastric cancer cells inhibited cell growth, migration, invasion, and induced apoptosis and cell cycle arrest at S-phase. Further investigation suggested that EMC6 overexpression in BGC823 human adenocarcinoma gastric cancer cells reduced tumorigenicity in a xenograft model, demonstrating that EMC6 has the characteristics of a tumor suppressor. This is the first study to show that EMC6 induces cell death in gastric cancer cells. The molecular mechanism of how EMC6 functions as a tumor suppressor needs to be further explored.

Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis

  • Cha, Eun Bi;Shin, Keun Koo;Seo, Jinho;Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.442-447
    • /
    • 2020
  • The non-viral delivery of genes into macrophages, known as hard-to-transfect cells, is a challenge. In this study, the microporation of a CpG-free and small plasmid (pCGfd-GFP) showed high transfection efficiency, sustainable transgene expression, and good cell viability in the transfections of Raw 264.7 and primary bone marrow-derived macrophages. The non-viral method using the pCGfd vector encoding anti-EGFR single-chain Fv fused with Fc (scFv-Fc) generated the macrophages secreting anti-EGFR scFv-Fc. These macrophages effectively phagocytized tumor cells expressing EGFR through the antibody-dependent mechanism, as was proved by experiments using EGFR-knockout tumor cells. Finally, peri-tumoral injections of anti-EGFR scFv-Fc-secreting macrophages were shown to inhibit tumor growth in the xenograft mouse model.

$^{99m}Tc-Labeling$ of Monoclonal Antibody to Carcinoembryonic Antigen and Biodistribution (항 암태아성항원에 대한 단세포군항체의 $^{99m}Tc$ 표지법개발 및 생체분포)

  • Moon, Dae-Hyuk;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Chung, Hong-Keun;Park, Jae-Gahb
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.380-391
    • /
    • 1992
  • This study was designed to evaluate a direct method of $^{99m}Tc$ labeling using $\beta-mercaptoethanol$ as a reducing agent, and to investigate whether $^{99m}Tc$ labeled specific monoclonal antibody against carcinoembryonic antigen (CEA-92) can be used for the scintigraphic localization of human colon cancer xenograft. Purified CEA-92 IgG was fragmented into F $(ab')_2$ and then labeled with $^{99m}Tc$ by transchelation method using glucarate as a chelator. Labeling efficiency, immunological reactivity and in vitro stability of $^{99m}Tc$ CEA-92 F $(ab')_2$ were measured and then injected intravenously into nude mice bearing human colon cancer (SNU-C4). Scintigrams were obtained at 24 hour after injection. Then nude mice were sacrificed and the radioactivity was measured Labeling efficiency of injected $^{99m}Tc$ CEA-92 F $(ab')_2$, immunoreative fraction and in vitro stability at 24 hour of injected $^{99m}Tc$ CEA-92 F $(ab')_2$ was 45.2%, 32.8% and 57.4%, respectively. At 24 hour after injection, % ID/g in kidney (46.77) showed high uptake, but %ID/g in tumor (1.65) was significantly higher than spleen (0.69), muscle (0.16), intestine (0.45), stomach (0.75), heart (0.48) and blood (0.45). There was no significant difference between tumor and liver (1.81). Tumor contrast as quantitated by tumor to blood ratio of $^{99m}Tc$ CEA-92 F $(ab')_2$ was increased significantly (p<0.005) until 24 hours (3.70), and there was no statistical differece from tumor to blood ratio of I-131 CEA-92 F $(ab')_2$. The scintigram demonstrated localization of radioactivity over transplanted tumor, but significant background radioactivity was also noted over kidney and abdomen. It is concluded that CEA-92 F $(ab')_2$ can be labeled with $^{99m}Tc$ by a direct transchelation method using $\beta-mercaptoethanol$ as a reducing agent and $^{99m}Tc$ labeled CEA-92 F $(ab')_2$ can be used for the scintigraphic localization of human colon cancer xenograft in nude mice model.

  • PDF

Curdione Inhibits Proliferation of MCF-7 Cells by Inducing Apoptosis

  • Li, Juan;Bian, Wei-He;Wan, Juan;Zhou, Jing;Lin, Yan;Wang, Ji-Rong;Wang, Zhao-Xia;Shen, Qun;Wang, Ke-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9997-10001
    • /
    • 2014
  • Background: Curdione, one of the major components of Curcuma zedoaria, has been reported to possess various biological activities. It thus might be a candidate anti-flammatory and cancer chemopreventive agent. However, the precise molecular mechanisms of action of curdione on cancer cells are still unclear. In this study, we investigated the effect of curdione on breast cancer. Materials and Methods: Xenograft nude mice were used to detect the effect of curdione on breast cancer in vivo; we also tested the effect of curdione on breast cancer in vitro by MTT, Flow cytometry, JC-I assay, and western blot. Results: Firstly, we found that curdione significantly suppressed tumor growth in a xenograft nude mouse breast tumor model in a dose-dependent manner. In addition, curdione treatment inhibited cell proliferation and induced cell apoptosis. Moreover, after curdione treatment, increase of impaired mitochondrial membrane potential occurred in a concentration dependent manner. Furthermore, the expression of apoptosis-related proteins including cleaved caspase-3, caspase-9 and Bax was increased in curdione treatment groups, while the expression of the anti-apoptotic Bcl-2 was decreased. Inhibitors of caspase-3 were used to confirm that curdione induced apoptosis. Conclusions: Overall, our observations first suggested that curdione inhibited the proliferation of breast cancer cells by inducing apoptosis. These results might provide some molecular basis for the anti-cancer activity of curdione.

Inhibition of Human Pancreatic Tumor Growth by Cytokine-Induced Killer Cells in Nude Mouse Xenograft Model

  • Kim, Ji Sung;Park, Yun Soo;Kim, Ju Young;Kim, Yong Guk;Kim, Yeon Jin;Lee, Hong Kyung;Kim, Hyung Sook;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.247-252
    • /
    • 2012
  • Pancreatic cancer is the fourth commonest cause of cancer-related deaths in the world. However, no adequate therapy for pancreatic cancer has yet been found. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against the human pancreatic cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 for 14 days. The resulting populations of CIK cells comprised 94% $CD3^+$, 4% $CD3^-CD56^+$, 41% $CD3^+CD56^+$, 11% $CD4^+$, and 73% $CD8^+$. This heterogeneous cell population was called cytokine-induced killer (CIK) cells. At an effector-target cell ratio of 100 : 1, CIK cells destroyed 51% of AsPC-1 human pancreatic cancer cells, as measured by the $^{51}Cr$-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 42% and 70% of AsPC-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for pancreatic cancer patients.