Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.11.1738

A New Bioluminescent Rat Prostate Cancer Cell Line: Rapid and Accurate Monitoring of Tumor Growth  

Lee, Mi-Sook (Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute)
Jung, Jae-In (Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute)
Kwon, Seung-Hae (Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute)
Shim, In-Sop (Department of Medical Science, Graduate School of East-West Medical Science Kyung Hee University)
Hahm, Dae-Hyun (Department of Medical Science, Graduate School of East-West Medical Science Kyung Hee University)
Han, Jeong-Jun (Glonet, Doosan Co.)
Han, Dae-Seok (Korea Food Research Institute)
Yoonpark, Jung-Han (Department of Food Science and Nutrition, Hallym University)
Her, Song (Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute)
Publication Information
Journal of Life Science / v.20, no.11, 2010 , pp. 1738-1741 More about this Journal
Abstract
Caliper measurements of tumor volume have been widely used in the assessment of tumors in animal models. However, experiments based on caliper data have resulted in unreliable estimates of tumor growth, due to necrotic areas of tumor mass. To overcome this systematic bias, we engineered a new luciferase-expressing rat prostate cancer cell line (MLL-Luc) that produces bioluminescence from viable cancer cells. MLL-Luc cells showed a strong correlation between bioluminescence intensity and cell number ($R^2$=0.99) and also accurately quantified tumor growth, with reduced bioluminescence signals caused by necrotic cells in a subcutaneous MLL-Luc xenograft model. The accurate quantification of tumor growth with bioluminescence imaging (BLI) was confirmed by a better antitumor effect of combination chemotherapy, compared to that based on caliper measurements with a correlation between the bioluminescence signal and tumor volume ($R^2$=0.84). These data suggest that bioluminescent MLL xenografts are a powerful and quantitative tool for monitoring tumor growth and are useful in evaluating the efficacy of anticancer drugs, with less systematic bias.
Keywords
Bioluminescent imaging; luciferase; prostate cancer xenograft; rat MAT LyLu (MLL) cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fan, F. and K. V. Wood. 2007. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol. 5, 127-136.   DOI
2 Kang, W. K., E. K. Park, H. S. Lee, B. Y. Park, J. Y. Chang, M. Y. Kim, H. A. Kang, and J. Y. Kim. 2007. A biologically active angiogenesis inhibitor, human serum albumin-TIMP-2 fusion protein, secreted from Saccharomyces cerevisiae. Protein Expr. Purif. 53, 331-338.   DOI   ScienceOn
3 Kim, T. S., H. S. Choi, B. Y. Ryu, G. T. Gang, S. U. Kim, D. B. Koo, J. M. Kim, J. H. Han, C. K. Park, S. Her, and D. S. Lee. Real-time in vivo bioluminescence imaging of lentiviral vector-mediated gene transfer in mouse testis. Theriogenol. 73, 129-138.
4 Klerk, C. P., R. M. Overmeer, T. M. Niers, H. H. Versteeg, D. J. Richel, T. Buckle, C. J. Van Noorden, and O. van Tellingen. 2007. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43, 7-13, 30.   DOI
5 Lee, M. S., E. H. Kwon, H. S. Choi, S. H. Kwon, C. H. Lee, I. S. Shim, S. K. Lee, and S. Her. Quantification of cellular uptake and in vivo tracking of transduction using real-time monitoring. Biochem. Biophys. Res. Commun. 394, 348-353.
6 Lyons, S. K. 2005. Advances in imaging mouse tumour models in vivo. J. Pathol. 205, 194-205.   DOI
7 Minn, A. J., Y. Kang, I. Serganova, G. P. Gupta, D. D. Giri, M. Doubrovin, V. Ponomarev, W. L. Gerald, R. Blasberg, and J. Massague. 2005. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44-55.   DOI
8 Nogawa, M., T. Yuasa, S. Kimura, J. Kuroda, K. Sato, H. Segawa, A. Yokota, and T. Maekawa. 2005. Monitoring luciferase-labeled cancer cell growth and metastasis in different in vivo models. Cancer Lett. 217, 243-253.   DOI
9 Scatena, C. D., M. A. Hepner, Y. A. Oei, J. M. Dusich, S. F. Yu, T. Purchio, P. R. Contag, and D. E. Jenkins. 2004. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer. Prostate 59, 292-303.   DOI
10 Brutkiewicz, S., M. Mendonca, K. Stantz, K. Comerford, R. Bigsby, G. Hutchins, M. Goebl, and M. Harrington. 2007. The expression level of luciferase within tumour cells can alter tumour growth upon in vivo bioluminescence imaging. Luminescence 22, 221-228.   DOI
11 Cui, K., X. Xu, H. Zhao, and S. T. Wong. 2008. A quantitative study of factors affecting in vivo bioluminescence imaging. Luminescence 23, 292-295.   DOI
12 Edinger, M., Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag. 2002. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur. J. Cancer 38, 2128-2136.   DOI