• Title/Summary/Keyword: tumor suppressor genes

Search Result 175, Processing Time 0.028 seconds

A case of interdigitating dendritic cell sarcoma studied by whole-exome sequencing

  • Hong, Ki Hwan;Song, Soyoung;Shin, Wonseok;Kang, Keunsoo;Cho, Chun?Sung;Hong, Yong Tae;Han, Kyudong;Moon, Jeong Hwan
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1279-1285
    • /
    • 2018
  • Interdigitating dendritic cell sarcoma (IDCS) is an aggressive neoplasm and is an extremely rare disease, with a challenging diagnosis. Etiology of IDCS is also unknown and most studies with only case reports. In our case, immunohistochemistry showed that the tumor cells were positive for S100, CD45, and CD68, but negative for CD1a and CD21. This study aimed to investigate the causative factors of IDCS by sequencing the protein-coding regions of IDCS. We performed whole-exome sequencing with genomic DNA from blood and sarcoma tissue of the IDCS patient using the Illumina Hiseq 2500 platform. After that, we conducted Sanger sequencing for validation of sarcoma-specific variants and gene ontology analysis using DAVID bioinformatics resources. Through comparing sequencing data of sarcoma with normal blood, we obtained 15 nonsynonymous single nucleotide polymorphisms (SNPs) as sarcoma-specific variants. Although the 15 SNPs were not validated by Sanger sequencing due to tumor heterogeneity and low sensitivity of Sanger sequencing, we examined the function of the genes in which each SNP is located. Based on previous studies and gene ontology database, we found that POLQ encoding DNA polymerase theta enzyme and FNIP1 encoding tumor suppressor folliculin-interacting protein might have contributed to the IDCS. Our study provides potential causative genetic factors of IDCS and plays a role in advancing the understanding of IDCS pathogenesis.

Mutantional analysis of tumor suppressor gene p53 in human oral squamous carcinoma cell line YD-9

  • Min, Ji-Hak;Kim, Do-Kyun;Lee, Moo-Hyung;Bae, Moon-Kyoung;Um, Kyung-Il;Kwak, Hyun-Ho;Park, Bong-Soo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2007
  • Oral squamous carcinoma (OSC) is the most common malignant neoplasm of the oral mucosa. Although the etiology of OSC is not fully understood, accumulated evidences indicate that the activation of proto-oncogenes and the inactivation of tumor suppressor genes underlie the disease development. An OSC cell line, YD-9 was newly established and characterized. However, the mutational analysis of p53 gene was not performed. Thus, in this study, the presence of mutation in the p53 gene was examined by amplification of exon-4 to -8 and subsequent DNA sequencing. Two point mutations were found in exon-4 and -6: A to G, resulting in amino acid change Tyr to Cys in exon-4, and C to G, resulting in amino acid change Gly to Arg in exon-6, respectively. Any mutation was not found in the exon-5, -7 and -8. The presented results would contribute to basic research to understand the biological mechanism of OSC using YD-9 cells.

Green Fluorescent Protein-reporter Mammalian One-hybrid System for Identifying Novel Transcriptional Modulators for Human $p14^{ARF}$ Tumor Suppressor Gene

  • Lee, Hye Jin;Yang, Dong Hwa;Yim, Tae Hee;Rhee, Byung Kirl;Kim, Jung-Wook;Lee, Jungwoon;Gim, Jin Bae;Kim, JungHo
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2002
  • To improve conventional yeast one-hybrid screening, we have developed an efficient mammalian one-hybrid system that allows rapid isolation of com-plementary DNAs which are able to induce human p14$^{ARF}$. tumor suppressor gene. A 1.5 kb promoter region of p14$^{ARF}$ was fused to EGFP to generate ARF promoter-EGFP reporter vector. This reporter plasmid was stably trans-fected into NIH3T3 cells for generation of reporter cell line. When the reporter cell line was infected with E2F-1 together with excess amounts of empty vector, the cells that received the positive modulator were readily identifiable by green fluorescence using FACS. The GFP-positive cells were cloned directly from the cultured cells and expanded in bulk culture. The genomic DNAs from GFP-positive cells were prepared and the CDNA insert in integrated retroviral genome was recovered by PCR using primers annealing to the retroviral vector sequences flanking the insert-cloning site. This system should be useful for efficient screening of expression CDNA libraries in mammalian cells to identify novel upstream regulators for spe-cific genes by one-hybrid interaction.ion.

DNA METHYLATION OF TPEF GENE IN HEAD AND NECK SQUAMOUS CELL CARCINOMA CELL LINES (두경부암 세포주에서 TPEF 유전자의 methylation 변이)

  • Chun, So-Young;Kim, Jung-Ock;Hong, Su-Hyung;Chung, Yu-Kyung;Jang, Hyun-Jung;Shon, Yoon-Kyung;Kim, Jung-Wan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.468-473
    • /
    • 2005
  • Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. The molecular mechanisms involved in the development and progression of these carcinomas are not well known. Abnormalities of genomic methylation patterns have been attributed a role in carcinogenesis and local de novo methylation at tumor suppressor loci was held to be involved in silencing of tumor suppressor genes. Using Ms APPCR, we previously isolated a hypermethylated fragment corresponded to the 5' end of TPEF gene from primary liver and lung cancer cells. To confirm the inactivation of TPEF gene by hypermethylation in HNSCC, we investigated correlation between methylation pattern and expression of TPEF in 10 HNSCC cell lines. In methylation analysis such as combined-bisulfite restriction analysis(COBRA) and bisulfite sequencing, only RPMI 2650 showed none methylated pattern and another 9 cell lines showed dense methylation. The TPEF gene expression level analysis using RT-PCR showed that these 9 cell lines had not or significantly low expression levels of TPEF as compared with RPMI 2650. In addition, the increase of TPEF reexpression by 5-AzaC as demethylating agent in 9 cell lines also indicated that TPEF expression was regulated by hypermethylation. These results of this study demonstrate that epigenetic silencing of TPEF gene by aberrant methylation could play an important role in HNSCC carcinogenesis.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Analysis of copy number abnormality (CNA) and loss of heterozygosity (LOH) in the whole genome using single nucleotide polymorphism (SNP) genotyping arrays in tongue squamous cell carcinoma (설편평상피암에 있어서의 고밀도 SNP Genotyping 어레이를 이용한 전게놈북제수와 헤테로접합성 소실의 분석)

  • Kuroiwa, Tsukasa;Yamamoto, Nobuharu;Onda, Takeshi;Bessyo, Hiroki;Yakushiji, Takashi;Katakura, Akira;Takano, Nobuo;Shibahara, Takahiko
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.6
    • /
    • pp.550-555
    • /
    • 2011
  • Chromosomal loss of heterozygosity (LOH) is a common mechanism for the inactivation of tumor suppressor genes in human epithelial cancers. LOH patterns can be generated through allelotyping using polymorphic microsatellite markers; however, owing to the limited number of available microsatellite markers and the requirement for large amounts of DNA, only a modest number of microsatellite markers can be screened. Hybridization to single nucleotide polymorphism (SNP) arrays using Affymetarix GeneChip Mapping 10 K 2.0 Array is an efficient method to detect genome-wide cancer LOH. We determined the presence of LOH in oral SCCs using these arrays. DNA was extracted from tissue samples obtained from 10 patients with tongue SCCs who presented at the Hospital of Tokyo Dental College. We examined the presence of LOH in 3 of the 10 patients using these arrays. At the locus that had LOH, we examined the presence of LOH using microsatellite markers. LOH analysis using Affymetarix GeneChip Mapping 10K Array showed LOH in all patients at the 1q31.1. The LOH regions were detected and demarcated by the copy number 1 with the series of three SNP probes. LOH analysis of 1q31.1 using microsatellite markers (D1S1189, D1S2151, D1S2595) showed LOH in all 10 patients (100). Our data may suggest that a putative tumor suppressor gene is located at the 1q31.1 region. Inactivation of such a gene may play a role in tongue tumorigenesis.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

Gene Expression in Gastric Adenocarcinomas (위선암에서의 유전자 발현)

  • Lee Jong Hoon;Choi Seok Ryeol;Han Sang Young;Hwang Tae Ho;Kim Min Chan;Jung Ghap Joong;Roh Mee Sook;Jeong Jin Sook
    • Journal of Gastric Cancer
    • /
    • v.2 no.4
    • /
    • pp.213-220
    • /
    • 2002
  • Purpose: The cDNA microarray provides a powerful alternative with an unprecedented view in monitoring geneexpression levels and leads to discoveries of regulatory pathways involved in complicated biological processes. Our aim is to explore the different gene-expression patterns in gastric adenocarcinomas. Materials and Methods: By using a cDNA microarray representing 4,600 cDNA clusters, we studied the expression profiling in 10 paired gastric adenocarcinoma samples and in adjacent noncancerous gastric tissues from the same patients. Alterations in the gene-expression levels were confirmed by Vsing Northern blots and reverse-transcription PCR (RT-PCR) in all of 4 randomly selected genes. Results: Genes those were expressed differently in cancer ous and noncancerous tissues were identified. 44 (of which 26 were known) and 92 (of which 43 were known) genes or cDNA were up- and down-regulated, respectively, in more than $80\%$ of the gastric adenocarcinoma samples. In cancer ous tissues, genes related to gene/protein expression, cellcycle regulation, and metabolism were mostly up-regulated whereas genes related to the oncogene/tumor suppressor gene, cell structure/motility, and immunology were mostly down-regulated. The semi-quantitative RT-PCR results for the four genes we tested were consistent with the array findings. Conclusions: These results provide not only a new molecular basis for understanding the biological properties of gastric adenocarcinomas but also a useful resource for future development of therapeutic targets and diagnostic markers for gastric adenocarcinomas.

  • PDF

Gene Expression Profile of Zinc-Deficient, Homocysteine-Treated Endothelial Cells

  • Kwun, In-Sook;Beattie, John H.
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.390-394
    • /
    • 2003
  • In the post-genome period, the technique for identifying gene expression has been progressed to high throughput screening. In the field of molecular nutrition, the use of screening techniques to clarify molecular function of specific nutrients would be very advantageous. In this study, we have evaluated Zn-regulated gene expression in Zn-deficient, homocystein-treated EA.hy926 cells, using cDNA microarray, which can be used to screen the expression of many genes simultaneously. The information obtained can be used for preliminary assessment of molecular and signaling events modulated by Zn under pro-atherogenic conditions. EA.hy926 cells derived from human umbilical vein endothelial cells were cultured in Zn-adequate (control, 15 $\mu$M Zn) or Zn-deficient (experimental, 0 $\mu$M Zn) Dulbecco's MEM media under high homocysteine level (100 $\mu$M) for 3 days of post-confluency. Cells were harvested and RNA was extracted. Total RNA was reverse-transcribed and the synthesized cDNA was labeled with Cy3 or Cy5. Fluorescent labeled cDNA probe was applied to microarray slides for hybridization, and the slide was then scanned using a fluorescence scanner. The expression of seven genes was found to be significantly decreased, and one significantly increased, in response to treatment of EA.hy926 cells with Zn-deficient medium, compared with Zn-supplemented medium. The upregulated genes were oncogenes and tumor suppressor genes, cell cycle-related genes and transporter genes. The down-regulated gene was RelB, a component of the NF-kappaB complex of transcription factors. The results of this study imply the effectiveness of cDNA microarray for expression profiling of a singly nutrient deficiency, namely Zn. Furthur study, using tailored-cDNA array and vascular endothelial cell lines, would be beneficial to clarify the molecular function of Zn in atherosclerosis, more in detail.

Autophagy and Oral Cancer (자가포식작용과 구강암)

  • Son, Seung Hwa;Kim, Eun-Jung
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.958-964
    • /
    • 2017
  • Autophagy plays an important role in cellular homeostasis and survival for cell recycling and various stresses within the cell. Recent studies have shown that autophagy activity modulates the expression of oncogene and tumor suppressor genes, leading to the development or suppression of cancer. Induction of autophagy is involved in preventing cancer development in normal cells and plays an important role in prompting a specific cell death mechanism in cancer cells with damaged cell death function. It is also known that autophagy inhibition increases the therapeutic efficacy by sensitizing cancer cells that are resistant to chemotherapy. However, the role of autophagy has not yet been fully understood in cancer treatment. Oral squamous cell carcinoma accounts for more than 90% of oral cancer and is the sixth most common cancer in the world. The incidence of oral cancer has increased by 50% over the last 20 years and the mortality rate is over 40% within 5 years after the onset. In oral cancers, the role of autophagy are described to look for tumor inhibitory in the early stages of tumor formation, like other cancers, indicating the dual functions involved in tumor cell survival include tumor progression stages. This review summarizes the various roles of autophagy in cancer cells and suggests the possibility of autophagy as a promising target for effective oral cancer therapy.