• Title/Summary/Keyword: tumor necrosis factor-{\alpha}

Search Result 1,705, Processing Time 0.028 seconds

The Effects of Danchunwhangagam on LPS or DFX-induced Cytokine Production in Peripheral Mononuclear Cells of Cerebral Infarction Patients

  • Son, Ji-Young;Lee, Key-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • This study was to investigate the effect of Danchunwhangagam(DCWGG) extract on the production of proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs) from Cerebral infarction(CI) patients. Methods: We examined how the inhibition rate of tumor necrosis factor (TNF)-$\alpha$, interleukin(IL)-1$\alpha$, IL-1$\beta$, IL-6, and IL-8 productions in DCWGG pretreatment PBMCs culture supernatant in the lipopolysaccaride(LPS)- or desferrioxamine(DFX)treated cells compared to unstimulated cells. Results: DCWGG inhibited the productions of TNF-$\alpha$, IL-1$\alpha$, IL-1$\beta$, IL-6, and IL-8 induced by LPS in a dose-dependent manner. Conclusions: DCWGG might have regulatory effects on LPS or DFX-induced cytokine production, which might explain its beneficial effect in the treatment of CI.

  • PDF

Effects of Danchunwhangagam on LPS or DFX-induced Cytokine Production in Peripheral Mononuclear Cells of Cerebral Infarction Patients (단천환가감이 중풍 환자의 말초 단핵구에서 LPS 및 DFX 유도성 사이토카인 생성에 미치는 영향)

  • Lee, Seoung-Geun;Lee, Key-Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.929-935
    • /
    • 2006
  • This study was to investigate the effect of Danchunwhangagam(DCWGG) extract on the production of proinflammatory cytokines in peripheral mononuclear cells (PBMCS) from Cerebral infarction(CI) patients. Methods: We examined that the inhibition rate of tumor necrosis factor $(TNF)-{\alpha},\;interleukin(IL)-1{\alpha},\;IL-1{\beta}$, IL-6, and IL-8 productions in DCWGG pretreatment PBMCs culture supernatant in the lipopolysaccaride(LPS)- or Oesferrioxamine(DFX)-treated cells compared to unstimulated cells. DCWGG inhibited the productions of $TNF-{\alpha},\;IL-1{\alpha},\;IL-1{\beta}$, IL-6, and IL-8 induced by LPS in a dose-dependent manner DCWGG might have regulatory effects on LPS or DFX-induced cytokine production, which might explain its beneficial effect in the treatment of CI.

Effects of Parsley Extract on Skin Anti-aging and Anti-irritation (파슬리추출물의 피부 노화 방지와 자극 완화에 대한 효과)

  • 김수남;이소희;최규호;장이섭;이병곤
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.79-83
    • /
    • 2004
  • In order to investigate the beneficial effects of parsely (Petroselinurn sativum) extract on skin, we measured the synthesis of total collagen and type I procollagen in cultured normal human fibroblast (NHF), the synthesis of prostaglandin E$_2$(PCE$_2$), interleukin 1 ${\alpha}$(IL -1 ${\alpha}$) and tumor necrosis factor ${\alpha}$ (TNF ${\alpha}$) in HaCaT cell and we also measured dermal thickness and density in hairless mouse (Female albino hairless mice, Skh:hr-1). As the results, the synthesis of total collagen and type I procollagen were increased 23% and 18% respectively, after 1 $\mu\textrm{g}$/mL parsley extract treatment. The producions of PGE$_2$ induced by UVB irradiation were decreased 60% after 1 $\mu\textrm{g}$/mL parsley extract treatment. The treatment with 1 $\mu\textrm{g}$/mL parsley extract also decreased the synthesis of IL -1 ${\alpha}$ and TNF ${\alpha}$ induced by 10 uM RA, 100 $\mu\textrm{g}$/mL SLS and 30 mJ/$\textrm{cm}^2$ UVB irradiation, After 4 days treatment with 1% parsley extract, the dermal thickness of hairless mouse was increased 1.5 times and the density of dermis was tighter than control. These results indicate that parsley extract have anti-aging and anti-irritation effects on skin.

The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity

  • Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways; myeloid differential factor 88 (MyD88) and Toll/IL-1R domain-containing adaptor inducing IFN-${\beta}$ (TRIF) leading to the activation of NF-${\kappa}B$ and IRF3. Numerous studies demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit NF-${\kappa}B$ activation induced by pro-inflammatory stimuli including lipopolysaccharide and tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$). However, the direct molecular targets for such anti-inflammatory phytochemicals are not fully identified. In this paper, we will discuss about the molecular targets of phytochemicals in TLRs signaling pathways. These results present a novel anti-inflammatory mechanism of phytochemicals in TLRs signaling.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

TSG101 Physically Interacts with Linear Ubiquitin Chain Assembly Complex (LUBAC) and Upregulates the TNFα-Induced NF-κB Activation

  • Eunju Kim;Hyunchu Cho;Gaeul Lee;Heawon Baek;In Young Lee;Eui-Ju Choi
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.430-440
    • /
    • 2023
  • Linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin E3 ligase complex composed of HOIP, HOIL-1L, and SHARPIN that catalyzes the formation of linear/M1-linked ubiquitin chain. It has been shown to play a pivotal role in the nuclear factor (NF)-κB signaling induced by proinflammatory stimuli. Here, we found that tumor susceptibility gene (TSG101) physically interacts with HOIP, a catalytic component of LUBAC, and potentiates LUBAC activity. Depletion of TSG101 expression by RNA interference decreased TNFα-induced linear ubiquitination and the formation of TNFα receptor 1 signaling complex (TNF-RSC). Furthermore, TSG101 facilitated the TNFα-induced stimulation of the NF-κB pathway. Thus, we suggest that TSG101 functions as a positive modulator of HOIP that mediates TNFα-induced NF-κB signaling pathway.

Anti-inflammatory Effect of Angelicae Gigantis Radix Water Extract on LPS-stimulated Mouse Macrophages (Lipopolysaccharide로 유발된 마우스 대식세포의 염증매개성 Cytokine 생성증가에 대한 참당귀 물추출물의 효능 연구)

  • Han, Hyo-Sang
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.113-119
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate the effects of Angelicae Gigantis Radix Water Extract(AG) on the production of proinflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide(LPS). Method : RAW 264.7 cells were cotreated with AG(50 and 100 ug/mL) and lipopolysaccharide(LPS; 1 ug/mL) for 24 hours. After 24 hour treatment, using Bead-based multiplex cytokine assay, concentrations of various cytokines such as interleukin(IL)-6, IL-$1{\beta}$, IL-10, tumor necrosis factor-alpha(TNF-${\alpha}$), granulocyte colony-stimulating factor(G-CSF), granulocyte macrophage colony-stimulating factor(GM-CSF), interferon inducible protein-10(IP-10), leukemia inhibitory factor(LIF), lipopolysaccharide-induced chemokine(LIX), monocyte chemoattractant protein-1(MCP-1), macrophage colony-stimulating factor(M-CSF), macrophage inflammatory protein(MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-2, Regulated on Activation, Normal T cell Expressed and Secreted(RANTES) and vascular endothelial growth factor(VEGF) were measured. Result : AG significantly inhibited LPS-induced production of TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, and M-CSF from LPS-stimulated RAW 264.7 cells at the concentrations of 50 and 100 ug/mL. AG significantly inhibited LPS-induced production of MIP-$1{\beta}$, MIP-2, GM-CSF, and IL-6 from LPS-stimulated RAW 264.7 cells at the concentrations of 50 ug/mL. AG significantly inhibited LPS-induced production of VEGF from LPS-stimulated RAW 264.7 cells at the concentrations of 100 ug/mL. But AG did not show any significant effect on the production of MCP-1, LIF, LIX, IP-10 and IL-$1{\beta}$ from LPS-induced RAW 264.7 cells. Conclusion : These results suggest that AG has anti-inflammatory effect related with its inhibition of proinflammatory mediators such as TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, MIP-$1{\beta}$, MIP-2, GM-CSF, IL-6, VEGF and M-CSF in LPS-induced macrophages.

The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities

  • I Nyoman Semita;Dwikora Novembri Utomo;Heri Suroto;I Ketut Sudiana;Parama Gandi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.72-83
    • /
    • 2023
  • Background: Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods: A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results: The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions: The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.

Protective Effect of Dried Mackerel Extract on Lipopolysaccharide-induced Inflammation (Lipopolysaccharide (LPS)에 의해 유도된 염증에 대한 건조 고등어 추출물의 항염증 효과)

  • Kim, Kwang-Hyuk;Choi, Myoung Won;Choi, Hyang Mi;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1140-1146
    • /
    • 2013
  • The effect of dried mackerel extract on the production of nitric oxide (NO) and cytokines, including interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and interferon-${\gamma}$ (IFN-${\gamma}$), was investigated. All extracts and fractions from dried mackerel significantly reduced NO production induced by lipopolysaccharide (LPS). Among the extracts, acetone+methylene chloride (A+M), n-hexane, and 85% aqueous methanol (MeOH) showed the strongest inhibitory effects. The 85% aqueous MeOH fraction at a concentration of $10{\mu}g$ significantly decreased LPS-induced IL-6 and TNF-${\alpha}$ production after 6 hr of incubation. In the case of LPS-induced IFN-${\gamma}$ production, the 85% aqueous MeOH fraction decreased the production of IFN-${\gamma}$ afer 6, 24, and 72 hr of incubation in a dose-dependent manner. The results show that an 85% aqueous MeOH fraction inhibits the production of NO and proinflammatory cytokines (IL-6, TNF-${\alpha}$, IFN-${\gamma}$), suggesting that this fraction acts as a potent immunomodulator.

Tumor Necrosis Factor-α Gene Polymorphisms and Risk of Oral Cancer: Evidence from a Meta-analysis

  • Chen, Fang-Chun;Zhang, Fan;Zhang, Zhi-Jiao;Meng, Si-Ying;Wang, Yang;Xiang, Xue-Rong;Wang, Chun;Tang, Yu-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7243-7249
    • /
    • 2013
  • Numerous studies have been conducted regarding association between TNF-${\alpha}$ and oral cancer risk, but the results remain controversial. The present meta-analysis is performed to acquire a more precise estimation of relationships. Databases of Pubmed, the Cochrane library and the China National Knowledge Internet (CNKI) were retrieved until August 10, 2013. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated with fixed- or random-effect models. The heterogeneity assumption was assessed by I-squared test. Among the eight included case-control studies, all were focused on TNF-${\alpha}$-308G>A and four also concerned the TNF-${\alpha}$-238G>A polymorphism. It was found that oral cancer risk were significant decreased with the TNF-${\alpha}$-308G>A polymorphism in the additive genetic model (GG vs. AA, OR=0.19, 95% CI: [0.04, 1.00], P=0.05, I2=68.9%) and the dominant genetic model (GG+GA vs. AA, OR=0.22, 95% CI: [0.06, 0.82], P=0.03, I2=52.4%); however, no significant association was observed in allele contrast (G vs. A, OR=0.70, 95% CI: [0.23, 2.16], P=0.54, I2=95.9%) and recessive genetic models (GG vs. GA+AA, OR=0.72, 95% CI: [0.33, 1.57], P=0.41, I2=93.1%). For the TNF-${\alpha}$-238G>A polymorphism, significant associations with oral cancer risk were found in the allele contrast (G vs. A, OR=2.75, 95% CI: [1.25, 6.04], P=0.01, I2=0.0%) and recessive genetic models (GG vs. GA+AA, OR=2.23, 95%CI: [1.18, 4.23], P=0.01, I2=0.0%). Conclusively, this meta-analysis indicates that TNF-${\alpha}$ polymorphisms may contribute to the risk of oral cancer. Allele G and the GG+GA genotype of TNF-${\alpha}$-308G>A may decrease the risk of oral cancer, while allele G and the GG genotype of TNF-${\alpha}$-238G>A may cause an increase.