• Title/Summary/Keyword: tumor necrosis factor α

Search Result 518, Processing Time 0.028 seconds

Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells

  • An, Xiangxue;Lee, Sang Gil;Kang, Hee;Heo, Ho Jin;Cho, Youn-Sup;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1367-1374
    • /
    • 2016
  • The present study evaluated the total phenolic and flavonoid contents as well as total antioxidant capacity (TAC) of three cultivars of Actinidia arguta Planch. kiwi berries; cv. Mansoo (Mansoo), cv. Chiak (Chiak), and cv. Haeyeon (Haeyeon). In addition, the anti-inflammatory effects of the three cultivars of kiwi berries were investigated using a lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Mansoo had the highest total phenolic content and TAC among the three cultivars, whereas Chiak had the highest total flavonoid content. The total antioxidant capacities of the kiwi berry extracts were more strongly correlated with total phenolic content than with total flavonoid content. The kiwi berry extracts suppressed the secretion of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α, from LPS-stimulated RAW 264.7 cells. The release of nitrite, an indirect indicator of nitric oxide, was also ameliorated by pre-treatment with the kiwi berry extracts in a dose-dependent manner. Cellular-based measurements of antioxidant capacity exhibited that the kiwi berry extracts had cellular antioxidant capacities. Such cellular antioxidant effects are possibly attributed to their direct antioxidant capacity or to the inhibition of reactive oxygen species generation via anti-inflammatory effects. Our findings suggest that kiwi berries are potential antioxidant and anti-inflammatory agents.

Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana

  • Kim, In-Woo;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Baek, Minhee;Kim, Mi-Ae;Shin, Yong Pyo;Kim, Sung Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1282-1289
    • /
    • 2020
  • Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and gram-positive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 ㎍/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had anti-inflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.

Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation

  • Kim, Su Min;Ha, Ji Sun;Han, A Reum;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.613-618
    • /
    • 2019
  • Microglial cells are known as the main immune cells in the central nervous system, both regulating its immune response and maintaining its homeostasis. Furthermore, the antioxidant ${\alpha}-lipoic$ acid (LA) is a recognized therapeutic drug for diabetes because it can easily invade the blood-brain barrier. This study investigated the effect of ${\alpha}-LA$ on the inflammatory response in lipopolysaccharide (LPS)-treated BV-2 microglial cells. Our results revealed that ${\alpha}-LA$ significantly attenuated several inflammatory responses in BV-2 microglial cells, including pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6, and other cytotoxic molecules, such as nitric oxide and reactive oxygen species. In addition, ${\alpha}-LA$ inhibited the LPS-induced phosphorylation of ERK and p38 and its pharmacological properties were facilitated via the inhibition of the nuclear factor kappa B signaling pathway. Moreover, ${\alpha}-LA$ suppressed the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, multiprotein complexes consisting of NLRP3 and caspase-1, which are involved in the innate immune response. Finally, ${\alpha}-LA$ decreased the genes accountable for the M1 phenotype, $IL-1{\beta}$ and ICAM1, whereas it increased the genes responsible for the M2 phenotype, MRC1 and ARG1. These findings suggest that ${\alpha}-LA$ alleviates the neuroinflammatory response by regulating microglial polarization.

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong;Shin, Kon Kuk;Kim, Haeyeop;Hong, Yo Han;Choi, Wooram;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.717-725
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

Carica papaya leaf water extract promotes innate immune response via MAPK signaling pathways

  • Hyun, Su Bin;Ko, Min Nyeong;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.277-284
    • /
    • 2021
  • The emergence and rapid spread of the potentially fatal coronavirus disease 2019, caused due to infection by severe acute respiratory syndrome coronavirus-2, has led to worldwide interest in developing functional bioactive ingredients that act as immunomodulatory agents. In this study, we aimed to characterize Carica papaya extract and explore its potential as an immunomodulator by performing in vitro cell screening. Papaya leaf water extract (PLW) was found to significantly increase the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) by upregulating inducible nitric oxide synthase and cyclo-oxygenase-2 activity, respectively. Additionally, PLW increased the production of tumor necrosis factor-α and interleukin 1β in RAW 264.7 cells. Furthermore, PLW activated the expression of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) but not that of p38 mitogen-activated protein kinase. These results indicate that PLW increased the production of NO, PGE2, and pro-inflammatory cytokines by activating the JNK and ERK pathways in macrophages, thus demonstrating immunomodulatory properties. Finally, high-performance liquid chromatography fingerprint analysis indicated the presence of rutin, narirutin, and ρ-coumaric acid in PLW (6.30, 119.76, and 47.25 ppm, respectively). Treating cells with these compounds at non-toxic concentrations had no effect on NO production. Taken together, these results suggest that PLW may have potential as an immunity-enhancing supplement.

Establishment of inflammatory model induced by Pseudorabies virus infection in mice

  • Ren, Chun-Zhi;Hu, Wen-Yue;Zhang, Jin-Wu;Wei, Ying-Yi;Yu, Mei-Ling;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2021
  • Background: Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. Objectives: Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. Methods: Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. Results: At 105-106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 102 TCID50 of PRV produced a significant inflammatory mediator increase. Conclusions: An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

Valeriana jatamansi Jones Inhibits Rotavirus-Induced Diarrhea via Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway

  • Zhang, Bin;Wang, Yan;Jiang, Chunmao;Wu, Caihong;Guo, Guangfu;Chen, Xiaolan;Qiu, Shulei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1115-1122
    • /
    • 2021
  • Rotavirus (RV), as the main cause of diarrhea in children under 5 years, contributes to various childhood diseases. Valeriana jatamansi Jones is a traditional Chinese herb and possesses antiviral effects. In this study we investigated the potential mechanisms of V. jatamansi Jones in RV-induced diarrhea. MTT assay was performed to evaluate cell proliferation and the diarrhea mice model was constructed using SA11 infection. Mice were administered V. jatamansi Jones and ribavirin. Diarrhea score was used to evaluate the treatment effect. The enzyme-linked immunosorbent assay was performed to detect the level of cytokines. Western blot and quantitative reverse transcription-PCR were used to determine protein and mRNA levels, respectively. Hematoxylin-eosin staining was applied to detect the pathological change of the small intestine. TdT-mediated dUTP nick-end labeling was conducted to determine the apoptosis rate. The results showed V. jatamansi Jones promoted MA104 proliferation. V. jatamansi Jones downregulated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in protein level, which was consistent with the immunohistochemistry results. Moreover, V. jatamansi Jones combined with ribavirin regulated interleukin-1β (IL-1β), interferon γ, IL-6, tumor necrosis factor α, and IL-10, and suppressed secretory immunoglobulin A secretion to remove viruses and inhibit dehydration. V. jatamansi Jones + ribavirin facilitated the apoptosis of small intestine cells. In conclusion, V. jatamansi Jones may inhibit RV-induced diarrhea through PI3K/AKT signaling pathway, and could therefore be a potential therapy for diarrhea.

Renoprotective Effect of Maydis Stigma on Puromycin Aminonucleoside-induced Nephrotic Syndrome (Puromycin Aminonucleoside에 의해 유도된 신증후군에 대한 옥미수(玉米鬚)의 보호효과)

  • Yoon, Jung-Joo;Kho, Min-Chol;Han, Byung-Hyuk;Kim, Hye-Yoom;Ahn, You-Mee;Lee, Yun-Jung;Lee, Ho-Sub;Kang, Dae-Gill
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives: Nephrotic syndrome is a kidney disorder, which is characterized by proteinuria, edema (swelling), and hyperlipidemia. Maydis Stigma (Corn silk) has been widely used in Asia as a traditional medicine and is known to have a diuretic effect and is used for the treatment of edema and indigestion. Methods: The aim of this study is to investigate the improvement effect of Maydis Stigma in treating nephrotic syndrome induced by puromycin aminonucleoside. Sprague-Dawley rats were intravenously injected with 75 mg/kg/day puromycin aminonucleoside, then treated with either Losartan or 200 mg/kg/day Maydis Stigma for seven days. Results: Maydis Stigma significantly decreased ascites and proteinuria level. Plasma levels of blood urea nitrogen (BUN) and plasma creatinine reduced significantly by Maydis Stigma. In addition, treatment with Maydis Stigma attenuated histological damage. Treatment with Maydis Stigma also restored podocin expression and reduced inflammation markers such as intracellular adhesion molecules (ICAM-1), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α) and high-mobility group box-1 (HMGB1). Conclusions: Maydis Stigma ameliorates kidney injury in nephrotic syndrome rat models. Maydis Stigma exerts a renoprotective effect owing to its anti-inflammatory effects and reductions of ascites and proteinuria. Thus, these results indicate that Maydis Stigma is likely to be a promising agent in the treatment of nephrotic syndrome.

Effects of resveratrol on the inflammatory response and renal injury in hyperuricemic rats

  • Xiao, Benxi;Ma, Wenjun;Zheng, Ying;Li, Zhen;Li, Dan;Zhang, Yanjun;Li, Yuanhong;Wang, Duan
    • Nutrition Research and Practice
    • /
    • v.15 no.1
    • /
    • pp.26-37
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Hyperuricemic nephropathy is a common cause of acute kidney injury. Resveratrol can ameliorate kidney injury, but the explicit mechanism remains unclear. We investigated the effects of resveratrol on the inflammatory response and renal injury in hyperuricemic rats. MATERIALS/METHODS: A rat model of hyperuricemic nephropathy was established by the oral administration of a mixture of adenine and potassium oxinate. Biochemical analysis and hematoxylin and eosin staining were performed to assess the rat kidney function. Enzyme-linked immunosorbent assays were performed to evaluate the immune and oxidative responses. RESULTS: The expression levels of urine albumin and β2-microglobulin were significantly decreased after resveratrol treatment. In addition, the levels of serum creatinine and uric acid were significantly decreased in the resveratrol groups, compared with the control group. The levels of proinflammatory factors, such as interleukin-1β and tumor necrosis factor-α, in kidney tissue and serum were also increased in the hyperuricemic rats, and resveratrol treatment inhibited their expression. Moreover, the total antioxidant capacity in kidney tissue as well as the superoxide dismutase and xanthine oxidase levels in serum were all decreased by resveratrol treatment. CONCLUSIONS: Resveratrol may protect against hyperuricemic nephropathy through regulating the inflammatory response.

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.