• 제목/요약/키워드: tumor models

검색결과 386건 처리시간 0.025초

Current status and clinical application of patient-derived tumor organoid model in kidney and prostate cancers

  • Eunjeong Seo;Minyong Kang
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.24-31
    • /
    • 2023
  • Urological cancers such as kidney, bladder, prostate, and testicular cancers are the most common types of cancers worldwide with high mortality and morbidity. To date, traditional cell lines and animal models have been broadly used to study pre-clinical applications and underlying molecular mechanisms of urological cancers. However, they cannot reflect biological phenotypes of real tissues and clinical diversities of urological cancers in vitro system. In vitro models cannot be utilized to reflect the tumor microenvironment or heterogeneity. Cancer organoids in three-dimensional culture have emerged as a promising platform for simulating tumor microenvironment and revealing heterogeneity. In this review, we summarize recent advances in prostate and kidney cancer organoids regarding culture conditions, advantages, and applications of these cancer organoids.

Clinical Implementation of Precision Medicine in Gastric Cancer

  • Jeon, Jaewook;Cheong, Jae-Ho
    • Journal of Gastric Cancer
    • /
    • 제19권3호
    • /
    • pp.235-253
    • /
    • 2019
  • Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.

유전자 조작기법을 통한 돼지 뇌종양 질환모델 개발의 필요성 (The Need for the Development of Pig Brain Tumor Disease Model using Genetic Engineering Techniques)

  • 황선웅;현상환
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.97-107
    • /
    • 2016
  • Although many diseases could be treated by the development of modern medicine, there are some incurable diseases including brain cancer, Alzheimer disease, etc. To study human brain cancer, various animal models were reported. Among these animal models, mouse models are valuable tools for understanding brain cancer characteristics. In spite of many mouse brain cancer models, it has been difficult to find a new target molecule for the treatment of brain cancer. One of the reasons is absence of large animal model which makes conducting preclinical trials. In this article, we review a recent study of molecular characteristics of human brain cancer, their genetic mutation and comparative analysis of the mouse brain cancer model. Finally, we suggest the need for development of large animal models using somatic cell nuclear transfer in translational research.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

  • Wen, Min;Jung, Shin;Moon, Kyung-Sub;Jiang, Shen Nan;Li, Song-Yuan;Min, Jung-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권3호
    • /
    • pp.131-135
    • /
    • 2014
  • Objective : With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique. Methods : U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft. Results : The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors. Conclusion : The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

Non-ablative Fractional Thulium Laser Irradiation Suppresses Early Tumor Growth

  • Yoo, Su Woong;Park, Hee-Jin;Oh, Gyungseok;Hwang, Soonjoo;Yun, Misun;Wang, Taejun;Seo, Young-Seok;Min, Jung-Joon;Kim, Ki Hean;Kim, Eung-Sam;Kim, Young L.;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.51-59
    • /
    • 2017
  • In addition to its typical use for skin rejuvenation, fractional laser irradiation of early cancerous lesions may reduce the risk of tumor development as a byproduct of wound healing in the stroma after the controlled injury. While fractional ablative lasers are commonly used for cosmetic/aesthetic purposes (e.g., photorejuvenation, hair removal, and scar reduction), we propose a novel use of such laser treatments as a stromal treatment to delay tumorigenesis and suppress carcinogenesis. In this study, we found that non-ablative fractional laser (NAFL) irradiation may have a possible suppressive effect on early tumor growth in syngeneic mouse tumor models. We included two syngeneic mouse tumor models in irradiation groups and control groups. In the irradiation group, a thulium fiber based NAFL at 1927 nm was used to irradiate the skin area including the tumor injection region with 70 mJ/spot, while no laser irradiation was applied to the control group. Numerical simulation with the same experimental condition showed that thermal damage was confined only to the irradiation spots, sparing the adjacent tissue area. The irradiation groups of both tumor models showed smaller tumor volumes than the control group at an early tumor growth stage. We also detected elevated inflammatory cytokine levels a day after the NAFL irradiation. NAFL treatment of the stromal tissue could potentially be an alternative anticancer therapeutic modality for early tumorigenesis in a minimally invasive manner.

Inhibitory Effects of Dunning Rat Prostate Tumor Fluid on Proliferation of the Metastatic MAT-LyLu Cell Line

  • Bugan, Ilknur;Altun, Seyhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.831-836
    • /
    • 2015
  • Tumor fluid accumulation occurs in both human cancer and experimental tumor models. Solid tumors show a tendency to tumor fluid accumulation because of their anatomical and physiological features and this may be influenced by molecular factors. Fluid accumulation in the peri-tumor area also occurs in the Dunning model of rat prostate cancer as the tumor grows. In this study, the effects of tumor fluids that were obtained from Dunning prostate tumor-bearing Copenhagen rats on the strongly metastatic MAT-LyLu cell line were investigatedby examining the cell's migration and tumor fluid's toxicity and the kinetic parameters such as cell proliferation, mitotic index, and labelling index. In this research, tumor fluids were obtained from rats injected with $2{\times}10^5$ MAT-LyLu cells and treated with saline solution, and 200 nM tetrodotoxin (TTX), highly specific sodium channel blocker was used. Sterilized tumor fluids were added to medium of MAT-LyLu cells with the proportion of 20% in vitro. Consequently, it was demonstrated that Dunning rat prostate tumor fluid significantly inhibited proliferation (up to 50%), mitotic index, and labeling index of MAT-LyLu cells (up to 75%) (p<0.05) but stimulated the motility of the cells in vitro.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

순기화중탕과 Doxorubicin의 병용이 MKN-45의 항암효과에 미치는 영향 (The Anti-tumor Effect of Soonkiwhajungtang with Doxorubicin in MKN-45 Conclusion)

  • 신민규;변준석
    • 대한한의학회지
    • /
    • 제25권2호
    • /
    • pp.98-109
    • /
    • 2004
  • Objectives : To evaluate the anti-tumor and synergic effect of Soonkiwhajungtang with doxorubicin. Methods : The inhibitory concentration (IC), $IC_{50}$ and $IC_{90}$ of single use of doxorubicin and Soonkiwhajungtang with their concomitant treatment against MKN-45 (human stomach carcinoma) cell line were observed using MTT (microculture tetrazolium test) assay. In addition, their anti-tumor effects were also observed in xenograft nude mice models against the MKN-45 cell line. Results : Soonkiwhajungtang has only minimal direct anti-tumor effect against MKN-45 cell line but it reduced general depressed signs induced by implantation of the tumor cell lines and increased the total WBC and lymphocyte numbers. Conclusions : It is considered or expected that Soonkiwhajungtang extract reduces the critical toxicity of doxorubicin and has favorable synergic anti-tumor effect when administered concomitantly with doxorubicin.

  • PDF