DOI QR코드

DOI QR Code

Clinical Implementation of Precision Medicine in Gastric Cancer

  • Received : 2019.05.13
  • Accepted : 2019.07.28
  • Published : 2019.09.30

Abstract

Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.

Keywords

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. https://doi.org/10.3322/caac.21492
  2. Jung KW, Won YJ, Kong HJ, Lee ES. Prediction of cancer incidence and mortality in Korea, 2018. Cancer Res Treat 2018;50:317-323. https://doi.org/10.4143/crt.2018.142
  3. Jung KW, Won YJ, Kong HJ, Lee ES; Community of Population-Based Regional Cancer Registries. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2015. Cancer Res Treat 2018;50:303-316. https://doi.org/10.4143/crt.2018.143
  4. Jun JK, Choi KS, Lee HY, Suh M, Park B, Song SH, et al. Effectiveness of the Korean national cancer screening program in reducing gastric cancer mortality. Gastroenterology 2017;152:1319-1328.e7. https://doi.org/10.1053/j.gastro.2017.01.029
  5. Kim HH, Han SU, Kim MC, Hyung WJ, Kim W, Lee HJ, et al. Long-term results of laparoscopic gastrectomy for gastric cancer: a large-scale case-control and case-matched Korean multicenter study. J Clin Oncol 2014;32:627-633.
  6. Vinuela EF, Gonen M, Brennan MF, Coit DG, Strong VE. Laparoscopic versus open distal gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials and high-quality nonrandomized studies. Ann Surg 2012;255:446-456. https://doi.org/10.1097/SLA.0b013e31824682f4
  7. Kim HI, Han SU, Yang HK, Kim YW, Lee HJ, Ryu KW, et al. Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann Surg 2016;263:103-109. https://doi.org/10.1097/SLA.0000000000001249
  8. Shen WS, Xi HQ, Chen L, Wei B. A meta-analysis of robotic versus laparoscopic gastrectomy for gastric cancer. Surg Endosc 2014;28:2795-2802. https://doi.org/10.1007/s00464-014-3547-1
  9. Son T, Kwon IG, Hyung WJ. Minimally invasive surgery for gastric cancer treatment: current status and future perspectives. Gut Liver 2014;8:229-236. https://doi.org/10.5009/gnl.2014.8.3.229
  10. Ahn JY, Jung HY, Choi KD, Choi JY, Kim MY, Lee JH, et al. Endoscopic and oncologic outcomes after endoscopic resection for early gastric cancer: 1370 cases of absolute and extended indications. Gastrointest Endosc 2011;74:485-493. https://doi.org/10.1016/j.gie.2011.04.038
  11. Isomoto H, Shikuwa S, Yamaguchi N, Fukuda E, Ikeda K, Nishiyama H, et al. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. Gut 2009;58:331-336. https://doi.org/10.1136/gut.2008.165381
  12. GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group, Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, et al. Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA 2010;303:1729-1737. https://doi.org/10.1001/jama.2010.534
  13. Lee JH, Kim JG, Jung HK, Kim JH, Jeong WK, Jeon TJ, et al. Clinical practice guidelines for gastric cancer in Korea: an evidence-based approach. J Gastric Cancer 2014;14:87-104. https://doi.org/10.5230/jgc.2014.14.2.87
  14. Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 2017;20:1-19. https://doi.org/10.1007/s10120-016-0622-4
  15. Noh SH, Park SR, Yang HK, Chung HC, Chung IJ, Kim SW, et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 2014;15:1389-1396. https://doi.org/10.1016/S1470-2045(14)70473-5
  16. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965;64:31-49. https://doi.org/10.1111/apm.1965.64.1.31
  17. Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO Classification of Tumours of the Digestive System. Geneva: World Health Organization, 2010.
  18. Tan IB, Ivanova T, Lim KH, Ong CW, Deng N, Lee J, et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 2011;141:476-485, 485.e1-485.e11. https://doi.org/10.1053/j.gastro.2011.04.042
  19. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-209. https://doi.org/10.1038/nature13480
  20. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21:449-456. https://doi.org/10.1038/nm.3850
  21. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 2013;145:554-565. https://doi.org/10.1053/j.gastro.2013.05.010
  22. Cheong JH, Yang HK, Kim H, Kim WH, Kim YW, Kook MC, et al. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol 2018;19:629-638. https://doi.org/10.1016/S1470-2045(18)30108-6
  23. Sohn BH, Hwang JE, Jang HJ, Lee HS, Oh SC, Shim JJ, et al. Clinical significance of four molecular subtypes of gastric cancer identified by the cancer genome atlas project. Clin Cancer Res 2017. doi: 10.1158/1078-0432.CCR-16-2211 [In press].
  24. Kim HS, Shin SJ, Beom SH, Jung M, Choi YY, Son T, et al. Comprehensive expression profiles of gastric cancer molecular subtypes by immunohistochemistry: implications for individualized therapy. Oncotarget 2016;7:44608-44620. https://doi.org/10.18632/oncotarget.10115
  25. Birkman EM, Mansuri N, Kurki S, Algars A, Lintunen M, Ristamaki R, et al. Gastric cancer: immunohistochemical classification of molecular subtypes and their association with clinicopathological characteristics. Virchows Arch 2018;472:369-382. https://doi.org/10.1007/s00428-017-2240-x
  26. Setia N, Agoston AT, Han HS, Mullen JT, Duda DG, Clark JW, et al. A protein and mRNA expression-based classification of gastric cancer. Mod Pathol 2016;29:772-784. https://doi.org/10.1038/modpathol.2016.55
  27. Ahn S, Lee SJ, Kim Y, Kim A, Shin N, Choi KU, et al. High-throughput protein and mRNA expressionbased classification of gastric cancers can identify clinically distinct subtypes, concordant with recent molecular classifications. Am J Surg Pathol 2017;41:106-115. https://doi.org/10.1097/PAS.0000000000000756
  28. Diaz Del Arco C, Estrada Munoz L, Molina Roldan E, Ceron Nieto MA, Ortega Medina L, Garcia Gomez de Las Heras S, et al. Immunohistochemical classification of gastric cancer based on new molecular biomarkers: a potential predictor of survival. Virchows Arch 2018;473:687-695. https://doi.org/10.1007/s00428-018-2443-9
  29. Gonzalez RS, Messing S, Tu X, McMahon LA, Whitney-Miller CL. Immunohistochemistry as a surrogate for molecular subtyping of gastric adenocarcinoma. Hum Pathol 2016;56:16-21. https://doi.org/10.1016/j.humpath.2016.06.003
  30. Park CK, Park JS, Kim HS, Rha SY, Hyung WJ, Cheong JH, et al. Receptor tyrosine kinase amplified gastric cancer: clinicopathologic characteristics and proposed screening algorithm. Oncotarget 2016;7:72099-72112. https://doi.org/10.18632/oncotarget.12291
  31. Choi YY, Jang E, Seo WJ, Son T, Kim HI, Kim H, et al. Modification of the TNM staging system for stage II/III gastric cancer based on a prognostic single patient classifier algorithm. J Gastric Cancer 2018;18:142-151. https://doi.org/10.5230/jgc.2018.18.e14
  32. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 2014;4:998-1013. https://doi.org/10.1158/2159-8290.CD-14-0001
  33. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001;84:1424-1431. https://doi.org/10.1054/bjoc.2001.1796
  34. Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A 2011;108:18708-18713. https://doi.org/10.1073/pnas.1111840108
  35. Hausser HJ, Brenner RE. Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun 2005;333:216-222. https://doi.org/10.1016/j.bbrc.2005.05.097
  36. Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011-2012. Nat Rev Drug Discov 2013;12:569. https://doi.org/10.1038/nrd4090
  37. DiMasi JA, Reichert JM, Feldman L, Malins A. Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther 2013;94:329-335. https://doi.org/10.1038/clpt.2013.117
  38. Arrowsmith J. Trial watch: phase II failures: 2008-2010. Nat Rev Drug Discov 2011;10:328-329. https://doi.org/10.1038/nrd3439
  39. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 2012;9:338-350. https://doi.org/10.1038/nrclinonc.2012.61
  40. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 2013;73:5315-5319. https://doi.org/10.1158/0008-5472.CAN-13-1069
  41. Rosfjord E, Lucas J, Li G, Gerber HP. Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol 2014;91:135-143. https://doi.org/10.1016/j.bcp.2014.06.008
  42. Choi YY, Lee JE, Kim H, Sim MH, Kim KK, Lee G, et al. Establishment and characterisation of patientderived xenografts as paraclinical models for gastric cancer. Sci Rep 2016;6:22172. https://doi.org/10.1038/srep22172
  43. Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep 2015;5:8542. https://doi.org/10.1038/srep08542
  44. Ji X, Chen S, Guo Y, Li W, Qi X, Yang H, et al. Establishment and evaluation of four different types of patient-derived xenograft models. Cancer Cell Int 2017;17:122. https://doi.org/10.1186/s12935-017-0497-4
  45. Zhang L, Liu Y, Wang X, Tang Z, Li S, Hu Y, et al. The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Sci Rep 2015;5:9447. https://doi.org/10.1038/srep09447
  46. Corso S, Cargnelutti M, Durando S, Menegon S, Apicella M, Migliore C, et al. Rituximab treatment prevents lymphoma onset in gastric cancer patient-derived xenografts. Neoplasia 2018;20:443-455. https://doi.org/10.1016/j.neo.2018.02.003
  47. Gavine PR, Ren Y, Han L, Lv J, Fan S, Zhang W, et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol 2015;9:323-333. https://doi.org/10.1016/j.molonc.2014.08.015
  48. Li S, Li Z, Guo T, Xing XF, Cheng X, Du H, et al. Maternal embryonic leucine zipper kinase serves as a poor prognosis marker and therapeutic target in gastric cancer. Oncotarget 2016;7:6266-6280. https://doi.org/10.18632/oncotarget.6673
  49. Wang H, Lu J, Tang J, Chen S, He K, Jiang X, et al. Establishment of patient-derived gastric cancer xenografts: a useful tool for preclinical evaluation of targeted therapies involving alterations in HER-2, MET and FGFR2 signaling pathways. BMC Cancer 2017;17:191. https://doi.org/10.1186/s12885-017-3177-9
  50. Wang X, Fu R, Hu Y, Du H, Li S, Li Z, et al. EGFR gene status predicts response and survival benefit in a preclinical gastric cancer trial treating patient-derived xenografts with cetuximab. Oncol Rep 2017;38:2387-2393. https://doi.org/10.3892/or.2017.5907
  51. Wu QN, Liao YF, Lu YX, Wang Y, Lu JH, Zeng ZL, et al. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Lett 2018;412:243-255. https://doi.org/10.1016/j.canlet.2017.10.007
  52. Park H, Cho SY, Kim H, Na D, Han JY, Chae J, et al. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer. Proc Natl Acad Sci U S A 2015;112:12492-12497. https://doi.org/10.1073/pnas.1507491112
  53. Wang Q, Zhang X, Shen E, Gao J, Cao F, Wang X, et al. The anti-HER3 antibody in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive gastric cancer. Cancer Lett 2016;380:20-30. https://doi.org/10.1016/j.canlet.2016.06.005
  54. Yin Y, Shen Q, Zhang P, Tao R, Chang W, Li R, et al. Chk1 inhibition potentiates the therapeutic efficacy of PARP inhibitor BMN673 in gastric cancer. Am J Cancer Res 2017;7:473-483.
  55. Shin SH, Park SS, Ju EJ, Park J, Ko EJ, Hwang JJ, et al. Establishment of a patient-derived xenograft for development of personalized HER2-targeting therapy in gastric cancer. Anticancer Res 2018;38:287-293.
  56. Sanmamed MF, Rodriguez I, Schalper KA, Onate C, Azpilikueta A, Rodriguez-Ruiz ME, et al. Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in $Rag2-/-IL2R{\gamma}$null immunodeficient mice. Cancer Res 2015;75:3466-3478. https://doi.org/10.1158/0008-5472.CAN-14-3510
  57. Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, et al. Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst 2019;111:409-418.https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30203099&dopt=Abstract https://doi.org/10.1093/jnci/djy134
  58. Guo X, Zhu H, Zhou N, Chen Z, Liu T, Liu F, et al. Noninvasive detection of HER2 expression in gastric cancer by 64Cu-NOTA-trastuzumab in PDX mouse model and in patients. Mol Pharm 2018;15:5174-5182. https://doi.org/10.1021/acs.molpharmaceut.8b00673
  59. Zhao N, Zhang C, Zhao Y, Bai B, An J, Zhang H, et al. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes. Oncotarget 2016;7:57277-57289. https://doi.org/10.18632/oncotarget.10031
  60. Nguyen PH, Giraud J, Chambonnier L, Dubus P, Wittkop L, Belleannee G, et al. Characterization of biomarkers of tumorigenic and chemoresistant cancer stem cells in human gastric carcinoma. Clin Cancer Res 2017;23:1586-1597. https://doi.org/10.1158/1078-0432.CCR-15-2157
  61. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011;141:1762-1772. https://doi.org/10.1053/j.gastro.2011.07.050
  62. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018;359:920-926. https://doi.org/10.1126/science.aao2774
  63. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015;160:324-338. https://doi.org/10.1016/j.cell.2014.12.021
  64. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015;161:933-945. https://doi.org/10.1016/j.cell.2015.03.053
  65. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017;23:1424-1435. https://doi.org/10.1038/nm.4438
  66. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014;159:176-187. https://doi.org/10.1016/j.cell.2014.08.016
  67. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 2018;173:515-528.e17. https://doi.org/10.1016/j.cell.2018.03.017
  68. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018;172:373-386.e10. https://doi.org/10.1016/j.cell.2017.11.010
  69. Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res 2016;76:2465-2477. https://doi.org/10.1158/0008-5472.CAN-15-2402
  70. Yang H, Sun L, Liu M, Mao Y. Patient-derived organoids: a promising model for personalized cancer treatment. Gastroenterol Rep (Oxf ) 2018;6:243-245. https://doi.org/10.1093/gastro/goy040
  71. Aberle MR, Burkhart RA, Tiriac H, Olde Damink SW, Dejong CH, Tuveson DA, et al. Patientderived organoid models help define personalized management of gastrointestinal cancer. Br J Surg 2018;105:e48-e60. https://doi.org/10.1002/bjs.10727
  72. Nagle PW, Plukker JT, Muijs CT, van Luijk P, Coppes RP. Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol 2018;53:258-264. https://doi.org/10.1016/j.semcancer.2018.06.005
  73. Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 2017;24:1092-1100. https://doi.org/10.1016/j.chembiol.2017.06.012
  74. Yan HH, Siu HC, Law S, Ho SL, Yue SS, Tsui WY, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 2018;23:882-897.e11. https://doi.org/10.1016/j.stem.2018.09.016
  75. Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, et al. Divergent routes toward wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 2018;174:856-869.e17. https://doi.org/10.1016/j.cell.2018.07.027
  76. Wang X, Liang Q, Zhang L, Gou H, Li Z, Chen H, et al. C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncRNA DUSP5P1 and associates with patient outcomes. Clin Cancer Res 2019;25:3128-3140. https://doi.org/10.1158/1078-0432.CCR-18-2804
  77. Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, et al. Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 2018;9:37439-37457. https://doi.org/10.18632/oncotarget.26473
  78. Steele NG, Chakrabarti J, Wang J, Biesiada J, Holokai L, Chang J, et al. An organoid-based preclinical model of human gastric cancer. Cell Mol Gastroenterol Hepatol 2019;7:161-184. https://doi.org/10.1016/j.jcmgh.2018.09.008
  79. Gao M, Lin M, Rao M, Thompson H, Hirai K, Choi M, et al. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues. Ann Surg Oncol 2018;25:2767-2775. https://doi.org/10.1245/s10434-018-6662-8
  80. Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grutzmann K, et al. Human gastric cancer modelling using organoids. Gut 2019;68:207-217 https://doi.org/10.1136/gutjnl-2017-314549
  81. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 2015;21:1318-1325. https://doi.org/10.1038/nm.3954
  82. Schutte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, Keil M, et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun 2017;8:14262. https://doi.org/10.1038/ncomms14262
  83. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 2017;7:462-477. https://doi.org/10.1158/2159-8290.CD-16-1154
  84. Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M, Batra RN, et al. A Biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 2016;167:260-274.e22. https://doi.org/10.1016/j.cell.2016.08.041
  85. Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P. Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol 2017;10:106. https://doi.org/10.1186/s13045-017-0470-7
  86. Garrido-Laguna I, Tan AC, Uson M, Angenendt M, Ma WW, Villaroel MC, et al. Integrated preclinical and clinical development of mTOR inhibitors in pancreatic cancer. Br J Cancer 2010;103:649-655. https://doi.org/10.1038/sj.bjc.6605819
  87. Jimeno A, Amador ML, Kulesza P, Wang X, Rubio-Viqueira B, Zhang X, et al. Assessment of celecoxib pharmacodynamics in pancreatic cancer. Mol Cancer Ther 2006;5:3240-3247. https://doi.org/10.1158/1535-7163.MCT-06-0565
  88. Liu X, Meltzer SJ. Gastric cancer in the era of precision medicine. Cell Mol Gastroenterol Hepatol 2017;3:348-358. https://doi.org/10.1016/j.jcmgh.2017.02.003
  89. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 2011;10:1311-1316. https://doi.org/10.1158/1535-7163.MCT-11-0233
  90. Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res 2011;17:5793-5800. https://doi.org/10.1158/1078-0432.CCR-11-0341
  91. Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of nonsmall cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res 2010;16:1442-1451. https://doi.org/10.1158/1078-0432.CCR-09-2878
  92. Tuysuz N, van Bloois L, van den Brink S, Begthel H, Verstegen MM, Cruz LJ, et al. Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells. Nat Commun 2017;8:14578. https://doi.org/10.1038/ncomms14578
  93. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 2013;73:4885-4897. https://doi.org/10.1158/0008-5472.CAN-12-4081
  94. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 2011;17:1514-1520. https://doi.org/10.1038/nm.2454
  95. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 2007;13:3989-3998. https://doi.org/10.1158/1078-0432.CCR-07-0078
  96. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 2015;518:422-426. https://doi.org/10.1038/nature13952
  97. Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 2016;18:827-838. https://doi.org/10.1016/j.stem.2016.04.003
  98. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015;521:43-47. https://doi.org/10.1038/nature14415
  99. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 2015;21:256-262. https://doi.org/10.1038/nm.3802
  100. Gambardella V, Cervantes A. Precision medicine in the adjuvant treatment of gastric cancer. Lancet Oncol 2018;19:583-584. https://doi.org/10.1016/S1470-2045(18)30131-1
  101. Lee J, Cristescu R, Kim KM, Kim K, Kim ST, Park SH, et al. Development of mesenchymal subtype gene signature for clinical application in gastric cancer. Oncotarget 2017;8:66305-66315. https://doi.org/10.18632/oncotarget.19985
  102. Huang L, Wu RL, Xu AM. Epithelial-mesenchymal transition in gastric cancer. Am J Transl Res 2015;7:2141-2158.
  103. Cao H, Xu W, Qian H, Zhu W, Yan Y, Zhou H, et al. Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett 2009;274:61-71. https://doi.org/10.1016/j.canlet.2008.08.036
  104. Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 2011;129:820-831. https://doi.org/10.1002/ijc.25944
  105. Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011;2011:396076.
  106. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009;8:579-591. https://doi.org/10.1038/nrd2803
  107. Shin MK, Cheong JH. Mitochondria-centric bioenergetic characteristics in cancer stem-like cells. Arch Pharm Res 2019;42:113-127. https://doi.org/10.1007/s12272-019-01127-y
  108. Lee J, Kim H, Lee JE, Shin SJ, Oh S, Kwon G, et al. Selective cytotoxicity of the NAMPT inhibitor FK866 toward gastric cancer cells with markers of the epithelial-mesenchymal transition, due to loss of NAPRT. Gastroenterology 2018;155:799-814.e13. https://doi.org/10.1053/j.gastro.2018.05.024
  109. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet 2016;388:2654-2664. https://doi.org/10.1016/S0140-6736(16)30354-3
  110. Kim HJ, Oh SC. Novel systemic therapies for advanced gastric cancer. J Gastric Cancer 2018;18:1-19. https://doi.org/10.5230/jgc.2018.18.e3

Cited by

  1. Emerging precision therapies for gastric cancer vol.5, pp.4, 2019, https://doi.org/10.1080/23808993.2020.1760089
  2. Molecular target: pan-AKT in gastric cancer vol.5, pp.5, 2020, https://doi.org/10.1136/esmoopen-2020-000728
  3. Development and Application of Patient-Derived Cancer Organoidsin Clinical Management of Gastrointestinal Cancer: A State-of-the-Art Review vol.11, 2021, https://doi.org/10.3389/fonc.2021.716339
  4. Differences in Somatic Mutation Profiles between Korean Gastric Cancer and Gastric Adenoma Patients vol.10, pp.9, 2019, https://doi.org/10.3390/jcm10092038