• Title/Summary/Keyword: tubular structure

Search Result 267, Processing Time 0.026 seconds

Light and Electron Microscopic Observation in the Frozen-thawed Mouse Testicular Tissues (동결보존된 생쥐 고환조직 세포의 광학 및 전자현미경적 관찰)

  • Han, Sang-Chul;Song, Sang-Jin;Lee, Sun-Hee;Oh, Seung-Han;Koong, Mi-Kyung;Park, Yong-Seog
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.2
    • /
    • pp.127-133
    • /
    • 2003
  • Objective: The aim of this study was to investigate the morphological aspects of testicular tissue before and after freezing-thawing by light and transmission electron microscopy. Methods: Tissue biopsies were carried out on mouse testis for freezing. Samples in medium containing 20% glycerol were frozen by computer-controlled freezing program. The effect of freezing-thawing on the structural change of testicular tissues were examined by light and electron microscopy. Results: The freezing-thawing procedure had no significant effect on tubular diameter. However, it caused folding of the lamina propria, and notable damage to Sertoli cells, spermatogonia and spermatocytes. The cells were detached, desquamated from the basal lamina and had increased vacuolization. Round spermatids, elongated spermatids and spermatozoa were less affected, and most of them maintained their normal structure. Conclusions: The structure of spermatogonia, spermatocyte and basal compartments in seminiferous epithelium was significantly altered by freezing-thawing procedure of mouse testicular tissues. Thus, we need to develop a more reliable method for the cryopreservation of testicular tissues.

Nanotechnology in the Surface Treatment of Titanium Implant. (임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지)

  • Oh, Seung-Han
    • The Journal of the Korean dental association
    • /
    • v.48 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Tissue engineering has been enhanced by advance in biomaterial nature, surface structure and design. In this paper, I report specifically vertically aligned titania ($TiO_2$) nanotube surface structuring for optimization of titanium implants utilizing nanotechnology. The formation, mechanism, characteristics of titania nanotubes are explained and emerging critical role in tissue engineering and regenerative medicine is reviewed. The main focus of this paper is on the unique 3 dimensional tubular shaped nanostructure of titania and its effects on creating epochal impacts on cell behavior. Particularly, I discuss how different cells cultured on titania nanotube are adhered, proliferated, differentiated and showed phenotypic functionality compared to those cultured on flat titanium. As a matter of fact, the presence of titania nanotube surface structuring on titanium for dental applications had an important effect improving the proliferation and mineralization of osteoblasts in vitro, and enhancing the bone bonding strength with rabbit tibia over conventional titanium implants in vivo. The nano-features of titania nanotubular structure are expected to be advantageous in regulating many positive cell and tissue responses for various tissue engineering and regenerative medicine applications.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

The Design Characteristic in Contemporary Men's Knitwear - Focusing on Milano Collection from 2001 to 2010 - (현대 남성 니트 웨어의 디자인 특성 - 2001년~2010년 밀라노컬렉션을 중심으로 -)

  • Lee, Seung-A;Lee, Youn-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.4
    • /
    • pp.91-106
    • /
    • 2012
  • The purpose of this study was to offer some directions for the design of men's knitwear and provide basic data helpful for design conception and product development for creative and unique men's knitwear. As for the methodology, the investigator examined the works of these following ten designers that consistently participated in the men's Milano Collection for the last ten years from 2001 S/S to 2010 F/W: Burberry Prorsum, Costume National, D & G, D squared, Dolce & Gabbana, Giorgio Armani, Gucci, Iceberg, Prada, and Vivien Westwood. We identified the design elements expressed in knitwear, categorized examples for each element, and reviewed their characteristics. The results of this study are as follows. The designers usually adopted the H-silhouette with some room until 2006, after which the slim tubular silhouette became prevalent. Most of the designers made knitwear with normal yarn and expressed them by dyeing or printing regardless of seasons, which meant the usage level of fancy yarn was low. The much usage of the basic pattern was particularly salient. The most popular basic structure was plain, which was followed by rib and color pattern, which included the jacquard and intarsia pattern. The designers presented thick outer items made of thick yarn for F/W seasons and many thin inner items made of thin yarn for S/S seasons. The popular colors were brown from the Red Group(R) and beige from the Orange Group (YR) regardless of seasons. When achromatic colors were used a lot, there was a development of various grey shades. For the most used basic structure, plain, the designers employed such technical methods as printing, pleat treatment, and dyeing in high frequency.

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging (메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성)

  • Jang, Yeonggul;Kim, Dong Hwan;Jeon, Byunghwan;Han, Dongjin;Shim, Hackjoon;Chang, Hyuk-jae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2016
  • Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight (프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가)

  • Choi, Ji Hun;Choi, Seung Jai;Yang, Dal Hun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.369-380
    • /
    • 2019
  • When a extreme loading such as blast is applied to prestressed concrete (PSC) structures and infrastructures for an instantaneous time, serious property damages and human casualties occur. However, a existing design procedure for PSC structures such as prestressed containment vessel (PCCV) and gas storage tank do not consider a protective design for extreme internal blast scenario. Particularly, an internal blast is much more dangerous than that of external blast. Therefore, verification of the internal blast loading is required. In this paper, the internal blast resistance capacity of PSC member is evaluated by performing internal blast tests on RC and bi-directional PSC scaled down specimens. The applied internal blast loads were 22.68, 27.22, and 31.75 kg (50, 60, and 70 lbs) ANFO explosive charge at 1,000 mm standoff distance. The data acquisitions include blast pressure, deflection, strain, crack patterns, and prestressing force. The test results showed that it is possible to predict the damage area to the structure when internal blast loading occurs in PCCV structures.

The Morphology and Morphometry of the Olfactory Organ of Southern King Spine Loach, Iksookimia hugowolfeldi (Cypriniformes, Cobitidae) (한국고유종 남방종개 Iksookimia hugowolfeldi 후각기관의 형태 및 형태계측학적 연구)

  • Kim, Hyun Tae;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.32 no.2
    • /
    • pp.49-54
    • /
    • 2020
  • The morphometry and morphology of the olfactory organ of the southern king spine loach Iksookimia hugowolfeldi were investigated by stereo microscopy and statistical analysis. Its external morphology consists of two holes, the anterior and posterior nostrils. The anterior nostril (0.35~0.53 mm in diameter) forms tubular process protruding vertically from each side of the snout. The posterior nostril (0.32~0.68 mm in major diameter) is a eye-like hole parallel to the skin. Internally, the rosette structure is set with 14 to 21 lamellae and medium raphe on the inner floor. In morphometry, its lamellar number (male vs. female; 18±1.8 vs. 17±1.6, P<0.05) and lamellar number to standard length ratio (24.2±1.3% vs. 21.7±2.5%, P<0.05) was larger in male than female. The lamellar number and standard length have high correlation in male (P<0.001) but not in female (P=0.170). It seems that such characteristics of the olfactory organ of I. hugowolfeldi are related to its bottom-dwelling life which digs and takes a rest under sand and sexual dimorphism by a distinct degree in olfactory dependence for reproduction of each sex.

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel (유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Yun-Cheol;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.