DOI QR코드

DOI QR Code

유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel

  • 최현기 (경남대학교 소방방재공학과) ;
  • 배백일 (한양대학교 산업과학연구소) ;
  • 최윤철 (청운대학교 건축설비소방학과) ;
  • 최창식 (한양대학교 건축공학부)
  • 투고 : 2014.06.30
  • 심사 : 2014.10.06
  • 발행 : 2015.03.30

초록

합성구조의 안전성의 보장을 위해 대부분의 설계기준은 경험적 사실을 기반으로 강재의 설계기준항복강도의 상한선을 제시하고 있다. 그러나 세장비가 큰 콘크리트충전강관기둥과 같이 탄성 좌굴하중에 영향을 받는 부재의 경우 설계강도를 크게 낮게 평가함에 따라 비경제적 설계가 수행될 경우가 발생한다. 따라서 세장한 기둥의 경제적 설계를 위해 현행 설계기준에서 제시하고 있는 강재의 설계기준항복강도 이상의 항복강도를 보유한 강재가 사용될 경우 설계기준의 안전성에 대한 평가를 수행하였다. 다양한 경우에서의 높은 설계기준항복강도의 적용성 평가를 위하여 유한요소해석을 사용한 변수분석을 계획하였으며, 680MPa 급의 항복강도를 보유한 강재가 적용된 세장한 직사각형 콘크리트 충전 강관기둥의 실험을 수행하여 유한요소해석 모델의 적합성 평가와 고강도 강재의 적용성 평가를 수행하였다. 변수분석에 적용된 변수는 강재의 항복강도, 콘크리트의 설계기준압축강도, 강재의 두께와 세장비로 구성되었다. 각 변수들은 KBC 2009에 의한 강도와 비교되었다. 54개의 모델에 대한 변수분석 결과와 기 수행 연구결과들을 통해 세장한 직사각형 콘크리트 충전 강관기둥은 KBC에서 제안하고 있는 강재항복강도의 제한을 초과할 경우에도 안전하게 설계될 수 있는 것으로 나타났다.

For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.

키워드

참고문헌

  1. AISC (2010), Specification for structural steel buildings. Chicago (IL): American Institute of Steel Construction, Inc.
  2. Architectural Institute of Korea (2009), Korean Building Code, 421-645.
  3. Bridge, R. Q. (1976), Concrete filled steel tubular columns, Research Rep. No. R 283, The Univ. of Sydney, Australia.
  4. Choi, I. R., Hong, G. H. (2012), Experimental tests on eccentrically loaded high-strength hybrid concrete-filled steel tube columns, Proceedings of Korean Concrete Institute, 639-640.
  5. Collins, M. P., and Porasz, A. (1989), Shear Design for High Strength Concrete, CEB Bulletin d'Information, No. 193, 77-83.
  6. Ehab Ellobody, Ben Youngb,. Dennis Lam (2006), Behaviour of normal and high strength concrete-filled compact steel tubecircular stub columns, Journal of Constructional Steel Research, 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  7. Fujimoto, T., Nishiyama, I., Mukai, A., Baba, T. (1995), Test results of eccentrically loaded short columns-square CFT columns, Proceedings of the second joint technical coordinating committee meeting on composite and hybrid structures.
  8. Furlong, R. W. (1988), Strength of steel-encased concrete beam columns, J. Struct. Div. ASCE, 93(5), 113-124.
  9. Grauers, M. (1993), Composite columns of hollow sections filled with high strength concrete. Research report. Chalmers University of Technology, Goteborg.
  10. H. Shakir-Khalil and J. Zeghiche (1989), Experimental behaviour of concrete filled rolled rectangular hollow-section columns. Structural Engineer, 67(19), 346-353.
  11. H. Shakir-Khalil and M. Mouli (1990), Further tests on concrete-filled rectangular hollow-section columns. Structural Engineer, 68(20), 405-413.
  12. Han, L., and Yao, G. (2000), Influence of Concrete Compaction on the Strength of Concrete-filled Steel RHS Columns, Journal of Constructional Steel Research, 59(6), 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7
  13. Hibbit (2010), Karrlson & Sorensen, Inc., ABAQUS Theory Manual Ver. 6.10.1.
  14. Jung, H. S., Choi, C. S. (2011), An experimental study on the behavior of square concrete-filled high strength steel tube columns, Journal of iron and steel research international, 18, Supplement 1-2.
  15. Kang, C. H., Oh, Y. S., and Moon, T. S. (2001), Strength of Axially Loaded Concrete filled Tubular Stub Column, International Journal of Steel Structures, Korean Society of Steel Construction, 13(3), 279-287.
  16. Kang, H. S., Lim, S. H., Moon, T. S. (2001), An Experimental Study on the CFT Stub Columns Filled With High Strength Concrete, Journal of Architectural Institute of Korea, 17(4), 29-36.
  17. Knowles, R. B., and Park, R. (1969), Strength of concrete-filled steel columns, J. Struct. Div. ASCE, 95(2), 2265-2587.
  18. Korea Concrete Institute (2012), Concrete Design Requirements, 75-77.
  19. KS F 2405 (2010), STANDARD TEST METHOD FOR COMPRESSIVE STRENGTH OF CONCRETE, Korean Agency for Technology and Standards, 1-16.
  20. Lee, C. H., Kim, D. K., Han, K. H., Kim, J. H., Lee, S. E., Ha, T. H. (2012), Compressive Strength and Residual Stress Evaluation of Stub Columns Fabricated of High Strength Steel, Korean Society of Steel Construction, 24(1), 23-34. https://doi.org/10.7781/kjoss.2012.24.1.023
  21. Lee, J. H., and Gregory L. Fenves (1998), A Plastic-Damge Concrete Model for Earthquake Analysis of Dams, Earthquake Engineering and Structural Dynamics, 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  22. Lee, M. J. (2008), The Specified Minimum Yield Stress of SM570TMC in CFT Composite Columns, Journal of Korean Society of Steel Construction, 20(1), 205-213.
  23. Matsui, C., Mitani, I., Kawano, A., Tsuda, K. (1997), AIJ Design Method for Concrete Filled Steel Tubular Structure, ASCCS Seminar.
  24. Okamura, H., Maekawa, K. (1991), Nonlinear analysis and constitutive models of reinforced concrete, Gihodo-Shuppan Co., Tokyo, 1-182.
  25. Schneider, P. S. (1998), Axially Loaded Concrete-filled Steel Tubes, Journal of Structural Engineering, ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  26. Seo, S. Y., and Chung, J. A. (2002), An Experimental Study on Strength of Slender Square Tube Columns Filled with High Strength Concrete, International Journal of Steel Structures, Korean Society of Steel Construction, 14(4), 471-479.
  27. Shim, J. S., Kim, K. S. (2000), A Study on the Axial Compression Behavior of Rectangular Steel Tubular Stub Columns Infilled with High Strength Concrete, Journal of Architectural Institute of Korea, 16(2), 75-82.
  28. Song, J. Y., and Kwon, Y. B. (1997), Structural Behavior of Concrete-filled Steel Box Sections, IABSE reports, Innsbruck, Austria, September 16-18, 765-800.
  29. Uy, B. (2001), Strength of Short Concrete-filled High Strength Steel Box Columns, Journal of Constructional Steel Research, 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
  30. Uy, B. (2002), Strength of Slender Concrete-filled Steel Box Columns Incorporating Local Buckling, Journal of Constructional Steel Research, 58(2), 341-352.
  31. Yang, Y. S., and Seo, J. H. (2001) Structural Behavior of High Strength Concrete Filled Steel Tubular Columns, Journal of the Architectural Institute of Korea, 17(1), 67-74.