• Title/Summary/Keyword: tubular joints

Search Result 118, Processing Time 0.024 seconds

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends (복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측)

  • Oh, Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

The Prediction of Yield Load in Circular Tubular T-type Cross Sections on the Truss Structures (강관트러스의 T형 격점부의 항복하중 예측에 관한 연구)

  • Park, Il Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2001
  • many steel tubular truss as roof structures are used of the large span structures Steel tubular sectioned truss has the structural merits in compared with other sections such as H, L-shape sections However it occurs local buckling at the joint of branch in truss and it makes the deterioration of loading capacity Loading capacity and deformation characteristics of truss joints are very complicate so it is very hard to predict exact solution of them Therefore this thesis dealt with T-type joints of steel circular hollow sectioned truss. A series of experimental scheme were planned and mainly experimental parameters were : ratio of diameter of branch-diameter of main chord(d/D). diameter-thickness(T/D) of main chord. In this paper predicted yield load capacity using by closed ring analysis method additionally compared with that of suggested by closed ring analysis method additionally compared with that of suggested by other countries.

  • PDF

Experiments and analysis of the post-buckling behaviors of aluminum alloy double layer space grids applying ball joints

  • Hiyama, Yujiro;Ishikawa, Koichiro;Kato, Shiro;Okubo, Shoji
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-304
    • /
    • 2000
  • This study discusses on the experimental and analytical results of the global buckling tests, carried out on aluminum alloy double layer space grids composed of tubular members, ball joints and connecting bolts at the member ends, with the purpose of demonstrating the effectiveness of a simplified analysis method using an equivalent slenderness ratio for the members. Because very few experiments have been carried out on this type of aluminum space grids, the buckling behavior is investigated experimentally over the post buckling regions using several space grid specimen with various values for the member slenderness ratio. The observed behavior duping the experiments is compared with the analytically obtained results. The comparison is made based on two different schemes; one on the plastic hinge method considering a bending moment-axial force interaction for members and the other on a method using an equivalent slenderness ratio. It is confirmed that the equivalent slenderness method can be effectively applied, even in the post buckling regions, once the effects of the rotational rigidity at the ball joints are appropriately evaluated, because the rigidity controls the buckling behavior. The effectiveness of the equivalent slenderness method will be widely utilized for estimation of the ultimate strength, even in post buckling regions for large span aluminum space grids composed of an extreme large number of nodes and members.

Thermal Characteristic of the Tubular Single tap Adhesively Bonded Joint bonded with filler containing epoxy adhesive (충전재가 함유된 단일겹치기 접착 조인트의 열적 특성에 관한 연구)

  • Kim, Jin-Kook;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.370-376
    • /
    • 2001
  • When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because the elastic modulus and failure strength of structural adhesive decrease. The thermo-mechanical properties of structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the fille containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bonding length and the crack length was developed with respect to the volume fraction of filler.

  • PDF

A Study on the Strength and Failure Mode of Co-cured Composite Joints (동시경화법으로 제조된 복합재료 조인트의 강도 및 파괴모드 연구)

  • Choi, Jin-Ho;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.385-392
    • /
    • 1997
  • The joint design and manufacture of the composite structure have become an important research area because the structural efficiency of the composite structure is often determined by its joint not by its basic structure. The co-cured joint is an efficient joint technique because both curing and jointing for composite structures are achieved simultaneously. In this paper, the torque capacities of the co-cured tubular lap joint with and without knurling of the pyamid type were experimentally measure. From the experimental resuts, it was found that the excess resin played a role as an adhesive in the co-cured tubular lap joint whose steel adherends were not knurled. Also, it was found that the torque capacity of the co-cured joint was increased as the knurling size of the pyramid type on the surface of the steel adherend was increased.

Fatigue Behavior of K-Joint Structure for API 2W Gr.60 Steel (API 2W Gr.60 강재적용 K-Joint 구조의 피로성능평가)

  • Im, Sung-Woo;Chang, In-Hwa;Jo, Chul-Hee;Park, Kwan-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Large-scale model tests of welded tubular K-joints were carried out to observe the fatigue behavior of API 2W Gr.60 steel produced by POSCO. The fatigue crack behaviors for various loading conditions were measured and investigated around the critical joint sections. The experimental results have been verified with numerical approaches and also compared with the IIW, DnV RP-C203 and API RP 2A-WSD design curves. The hot spot stress method was applied in the study. The SCF factor for tubular K-joint was also obtained.

  • PDF

The Elasto-Plastic Buckling Analysis of Ball-jointed Sing1e Layer Latticed Domes Considering the Connection Characteristics (접합부의 성질을 고려한 볼 접합 단층 래티스 돔의 탄소성 좌굴해석)

  • 한상을;권현재;신용환;배상달;이진섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.90-100
    • /
    • 2000
  • The present paper investigates the elasto-plastic buckling of ball-jointed single layer latticed domes considering the connection characteristics. The domes are composed of tubular member elements, ball joints and connectors. To judge yielding of the member, the ends and central part of tubular member elements are assumed as five elasto-plastic springs. Elasto-plastic buckling load can be identified the yielding load of estimated member As a numerical analysis technique, loading incremental method based on the Newton-Raphson method is used. The effects of connection characteristics are investigated by the following points; (1) the length of rigid zone, (2) looseness of screw, (3) diameter of connector Finally, it is emphasized that the connection characteristics as well as the material non-linearity have significant effects upon the buckling toad of domes.

  • PDF

Development Technique of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior Caused by Drive Shaft (구동축과 연관된 차량의 부밍 소음 저감을 위한 중공축 개발 기법)

  • Ko, Kang-Ho;Choi, Hyun-Joon;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.187-193
    • /
    • 2000
  • In order to reduce the booming noise caused by first bending mode of drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of drive shaft and applying the boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model for a shaft attached in vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft can be proposed at the early stage of design.

  • PDF

Behavior of composite CFST beam-concrete column joints

  • Kim, Seung-Eock;Choi, Ji-Hun;Pham, Thai-Hoan;Truong, Viet-Hung;Kong, Zhengyi;Duong, Nguyen-The;Vu, Quang-Viet
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.75-90
    • /
    • 2020
  • This paper introduces a new composite joint, which is the composite CFST beam- concrete column joint, and it is more convenient for transportation and erection than conventionally welded joints. The main components of this joint include steel H-beams welded with CFST beams, reinforced concrete columns, and reinforced concrete slabs. The steel H-beams and CFST beams are connected with a concrete slab using shear connectors to ensure composite action between them. An experimental investigation was conducted to evaluate the proposed composite joint performance. A three-dimensional (3D) finite element (FE) model was developed and analyzed for this joint using the ABAQUS/explicit. The FE model accuracy was validated by comparing its results with the relevant test results. Additionally, the parameters that consisted of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab were considered to investigate their influence on the proposed joint performance.