• Title/Summary/Keyword: tube rail

Search Result 29, Processing Time 0.025 seconds

Effect of Injector Energizing Duration on the Atomization Characteristics of Biodiesel Fuel (인젝터 통전기간이 바이오디젤 연료 미립화에 미치는 영향)

  • Suh, Hyun-Kyu;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • This study investigates the influence of energizing duration on the fuel atomization characteristics of biodiesel injected through a high pressure common-rail injector. In order to analyze the effect of energizing duration on the fuel injection rate performance, the injection rate of biodiesel fuel is obtained from the pressure variation in the tube filled with fuel in injection measuring system. On the other hand, the atomization characteristics of biodiesel was measured and compared in terms of Sauter mean diameter(SMD), arithmetic mean diameter(AMD), droplet mean velocity, and detected droplets number by applying a phase Doppler particle analyzer(PDPA). It was revealed that the injection mass and maximum injection rate increase with increase of the energizing duration. Moreover, the increase of energizing duration improves the atomization performance of biodiesel fuel because it induces higher droplets momentum and velocity.

  • PDF

Manufacture and Bending Behavior of Stainless Steel Cylindrical Shell Filled with Aluminum Alloy Foam (다공성 알루미늄 합금이 충진된 스테인레스 강 원통 Shell의 제조 및 굽힘거동)

  • Kim, Am-Kee;Lee, Hyo-Jin;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.19-24
    • /
    • 2003
  • Potential applications of foam-filled section are the automotive structures. A foam-filled section can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision. In the case of side collision where bending is involved in the crushing mechanics, the foam filler will be significant in maintaining progressive crushing of the thin-walled structures so that more impact energy can be absorbed. In this study, the manufacturing process of closed cell aluminum alloy foam filled stainless steel tube was studied, and the various foam filled specimens including piecewise fillers were prepared, tested and discussed about the bending behaviors.

  • PDF

Development of Manufacturing Technology for Bumper Back Beam with Sandwich Plate (샌드위치판재를 적용한 자동차 범퍼 빔 개발)

  • Kim, D.K.;Ryu, J.S.;Park, S.E.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.199-202
    • /
    • 2009
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. Tn this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal Front Bumper Beam manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

Development of Manufacturing Technology for SILL SIDE with Roll Forming Process (롤 포밍 공법을 이용한 고강도 차체 SILL SIDE제작 기술 개발)

  • Kim, D.K.;Sohn, S.M.;Lee, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.357-360
    • /
    • 2008
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. In this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal SILL SIDE manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

Analysis of Fault Possibility and Vibration of Glass Insulator on High-speed Railway (고속철도용 유리애자의 진동 및 파손가능성 분석)

  • Kim, Young-Seok;Shong, Kil-Mok;Jung, Jin-Su;Kim, Sun-Gu;Jeon, Yong-Ju;Ryu, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2044-2045
    • /
    • 2008
  • This paper was studied fault possibility of glass insulator through the proper vibration and field vibration comparison. The proper vibration of 1 cell glass insulator have many frequency band and high amplitude showed in high frequency than low frequency. The field signal amplitude of viaduct and open route were biggest moment pantograph of high-speed rail. From the FFT analysis of viaduct and open route, in the case of positive direction, the strut tube insulator effect by vertical vibration was big, the frequency was 82.5Hz and 105Hz, respectively. However, in the case of negative direction, the vibration did not cause big effect. In comparison with the proper vibration of glass insulator, the resonance was not observed.

  • PDF

Analysis of effects of the roll forming process parameters of side sill (롤 포밍용 차체 부품 공정 변수 영향도 해석)

  • Kim, D.K.;Sohn, S.M.;Lee, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.310-313
    • /
    • 2007
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. In this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal roll flower model and proper roll-pass sequence can be suggested by analyzing courcenter strain and longitudinal strain according to the roll-pass with FEM simulation. And also effects of the process parameters on the final shape formed by roll forming defects a evaluated.

  • PDF

Study on Critical Impact Point for a SB2 Class Flexible Barrier (SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구)

  • Heo, Yeon Hee;Kim, Yong Guk;Ko, Man Gi;Kim, Kee Dong
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.