• Title/Summary/Keyword: tube method

Search Result 2,762, Processing Time 0.033 seconds

Derivation of design charts based on the two-dimensional structural analysis of geotextile tubes

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Park, Tae-Woong;Choi, Min-Jun;Jamin, Jay C.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.349-364
    • /
    • 2015
  • Analytical solutions for modeling geotextile tubes during the filling process and approximation method to determine the densified tube shape are reviewed. The geotextile tube filling analysis is based on Plaut & Suherman's two-dimensional solution for geotextile tubes having a weightless and frictionless inextensible membrane resting on a rigid horizontal foundation subjected to internal and external hydrostatic pressures. The approximation for the densified tube shape developed by Leshchinsky et al. was adopted. A modified method for approximating the densified tube shape based on an areal-strain deformation analysis is introduced. Design diagrams useful for approximating geotextile tube measurements in the design process are provided.

In-Situ Performance Test of a Wet Surface Finned-Tube Evaporator of an Air Source Heat Pump (공랭식 열펌프의 습표면 핀-관 증발기의 현장 성능 시험)

  • 백영진;장영수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.818-826
    • /
    • 2001
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist, From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. since current procedure underpredicted the experimental sensible heat factor(SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test in necessary.

  • PDF

Analysis of a Wet Surface Finned-tube Evaporator of an Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.211-219
    • /
    • 2002
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20 RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. Since current procedure underpredicted the experimental sensible heat factor (SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test is necessary.

Stress Analysis of Expansion Transition Area in Steam Generator Tube of Optimized Power Reactor-1000 (한국표준형원전 증기발생기 전열관 확관부위의 응력해석)

  • Kim, Young Kyu;Song, Myung Ho;Yoo, One
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The steam generators of OPR-1000 plants have Alloy 600 and Alloy 690 as the tube material and its tube expansion method is the explosive expansion method. According to the experience of these plants, circumferential cracks were largely occurred in steam generator tubes expanded by the explosive expansion method and their locations were the outer surface of tube expansion transition region surrounding with piled-up sludge. But even though tubes have the same conditions, tubes with the hydraulic expansion method shows the prevail trend of axial cracks compared to circumferential cracks. Therefore in this study, in order to identify the difference of such phenomena as above, configurations of tube and tubesheet were modeled and at operating conditions, stress values applied in the tube expansion transition area in accordance with tube expansion methods were calculated by using computational program and the direction and the predominance of cracks were evaluated.

Stress Analysis of Steam Generator Row-1 Tubes (증기발생기 제1열 전열관의 응력 해석)

  • Kim, Woo-Gon;Ryu, Woo-Seog;Lee, Ho-Jin;Kim, Sung-Chung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.25-30
    • /
    • 2000
  • Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the Internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent lesions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 MPa in axial direction at ${\psi}=0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at Position of${\psi}=90^{\circ}$, i.e., at apex region. In tube-to-tubesheet fouling methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the. transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa.

  • PDF

A Screening Method on Resistance of Tobacco Plants to Bacterial Wilt (세균성마름병에 대한 담배의 저항성검정 방법)

  • 이영근
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • Three kinds of inoculation methods, capillary, root cutting and dipping were compared for an efficient way to screening the resistant tobacco variety against bacterial wilt, Ralstonia solanacearum. The pricking a capillary tube contained the pathogenic bacterial suspension(10$^{7}$ cfu/$m\ell$) to an axillary bud of each tobacco plant showed different resistance well between varieties. The less period was required in inoculating work and in disease development for the inoculation method used with capillary tube than for two other inoculation methods tested also.

Estimation method of heat flux at tube bank exposed to high temperature flue gas in large scale coal fired boilers (보일러 내부 고온가스에 노출된 전열 튜브에서의 열유속 평가 방법)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.259-264
    • /
    • 2009
  • Most of the fossil power plants firing lower grade coals are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. The poor combustion conditions are directly related to the gas flow deviation in upper furnace and convection tube-bank but a less reported issue related to in large-scale oppose wall fired boilers. In order to develop a on-line combustion monitoring system and suggest an alternative heat flux estimation method at tube bank, which is very useful information for boiler design tool and blower optimizing system, field test was conducted at operating power boiler. During the field test the exhaust gases' temperature and tube metal temperature were monitored by using a spatially distributed sensors grid which located in the boiler's high temperature vestibule region. At these locations. the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. Test results showed that the flue gas monitoring method is more proper than metal temperature distribution monitoring for real time combustion monitoring because tube metal temp. distribution monitoring method is related to so many variables such as flue gas, internal flow unbalance, spray etc., Heat flux estimation at the tube bank with flue gas temp. and metal temp. data can be alternative method when tube drilling type sensor can't able to use.

  • PDF

Tube-Hole Center Detection Vision Algorithm for Verifying Position of Tele-Controlled Robot in Nuclear Steam Generator (원전 증기발생기 내 원격제어 로보트의 위치 검증을 위한 세관중심 검출 비젼 알고리듬)

  • 성시훈;강순주;진성일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.137-145
    • /
    • 1998
  • In this paper, we propose a tube-hole center detection vision algorithm verifying the position of a tele-controlled robot and providing visual information for increasing reliability and efficiency in the diagnosis of steam generator (SG) tubes in nuclear power plant. A tele-controlled robot plays a role in carrying the probe used in inspecting the integrity of SG tubes. Thus accurately locating a tele-controlled robot on the desired tube-hole center is important issue for reliability of inspection. To do this work, we have to find the tube-hole center locations from the input image. At first, we apply the three-class segmentation method modified for this application. WE extract minimum bounding rectangles (MBRs) in the theresholded binary image. Second, for discriminating between MBR by tube and MBR by noise, we introduce the MBR rejection rules as knowledge-based rule set. MBRs are divided into the very dark region MBRs and the very bright region MBRs. In order to describe the region of complete tube-hole, the MBRs need a process of pairing each other. We then can find the tube-hole center from the paired MBR. For more accurately finding the tube-hole center in several sequential images, the centers of some frames need to be averaged. We tested the performance of our method using hundreds of real images.

  • PDF

Optimization Design of an Aluminum Tube for an OPC Drum using Taguchi's Experimental Method (다구찌 실험법을 이용한 OPC 드럼용 튜브의 최적설계 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.103-108
    • /
    • 2007
  • In this paper, the optimized design and strength analysis have been presented based on the finite element and Taguchi's experimental methods. The stress, strain and displacement characteristics of OPC drum tubes are affected by rolling contact pressures between an OPC drum tube and a paper, design parameters of an aluminum tube and material properties. The OPC drum tubes with nine different geometrical models are analyzed for design parameters that are related to the outer diameter, the thickness, and the length of an aluminum tube for a toner cartridge. The optimized design parameters for an aluminum tube may be selected as the outer diameter of 28 mm, the thickness of 0.8 mm, and the length of 220 mm. But the currently used aluminum tube for a laser printer is fairly optimized based on the Taguchi's design analysis. The calculated FEM results showed that the affection ratio of the design parameter t, which may control the strength of an aluminum tube, is the most influential parameter among the length and an outer diameter of a tube.

Determination of Material Properties of Tube using Inverse Engineering and Analytic Method in Tube Bulge Test (역공학과 해석적 방법을 이용한 관재벌지시험에서의 관재물성치 결정)

  • Kim, Tae-Joon;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1508-1516
    • /
    • 2003
  • In numerical analysis for hydroforming process, the stress calculation is effected by flow stress which is general obtained by stress-strain relationship from uni-axial tension test, so the result of the analysis, especially in tube hydroforming, has limitation of accuracy, tubes are made in roll-forming process and become work-hardened. Then roll forming process causes material properties between rolling direction and circumstantial direction of the tube to be different. So it is difficult to predict material behavior in the process condition of bi-axial stress state. In this study, the flow stress of the tube is determined by inverse engineering approach and bulge test that is widely used for formability test in the condition of bi-axial stress. And Hill's quadratic yield function and flow rule are used to consider the anisotropy of the tube in the roll forming process.