• Title/Summary/Keyword: tsunami

Search Result 391, Processing Time 0.024 seconds

A Unity-based Simulator for Tsunami Evacuation with DEVS Agent Model and Cellular Automata (DEVS 에이전트 모델과 셀 오토마타를 사용한 유니티엔진 기반의 지진해일 대피 시뮬레이터 개발)

  • Lee, Dong Hun;Kim, Dong Min;Joo, Jun Mo;Joo, Jae Woo;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.772-783
    • /
    • 2020
  • Tsunami is a frightful natural disaster that causes severe damages worldwide. To minimize the damage, South Korea has built a tsunami warning system and designated evacuation sites in the east and south coasts. However, such countermeasures have not been verified whether they are adequate to minimize casualties since tsunami rarely occurs in South Korea. Recently, due to increasing earthquakes in the west coast of Japan, the likelihood of South Korea entering the damage area of tsunami rises; thus, in this paper, we develops a simulator based on Unity game engine to simulate the evacuation from tsunami. In order to increase the fidelity of the simulation results, the simulator applies a tsunami simulation model that analyzes coastal inundation based on cellular automata. In addition, the objects included in tsunami evacuation, such as humans, are modeled as an agent model that determines the situation and acts itself, based on the discrete-event system specification (DEVS), a mathematical formalism for describing a discrete event system. The tsunami simulation model and agent models are integrated and visualized in the simulator using Unity game engine. As an example of the use of this simulator, we verify the existing tsunami evacuation site in Gwangalli Beach in Busan and suggest the optimal alternative site minimizing casualties.

Tsunami wave Simulation y Sign Method - Its application in the East Sea - (Sign Method를 이용한 쯔나미파의 모의실험 - 동해에서의 적용 -)

  • 정종률;김성대
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.192-201
    • /
    • 1993
  • To reduce tsunami hazards, it is necessary to develope the methods which can simulate tsunami wave signals of coastal areas. In the present paper, it is attempted t use Sign Method for analyzing and simulating recorded tsunami signals. A tsunami record Y(t) can be represented as the convolution integral of a source evolution function E(t') and a wave propagation function K(t-t') Y(t)=.int. E(t')K(t-t')dt' A source function contains the peculiarities of a tsunami generator. A wave function is a kind of transfer function which contains the characteristics of a wave propagation path. The source functions and the wave function and the wave functions of 9 Korean coast points and 6 Japan coast points are estimated, and the tsunami wave signals are simulated by the convolution integrals of the source functions and the wave functions. According to the results of analysis, the Sign Method is an effective method for simulating tsunami wave signals of Korean coast points which are located far from tsunami source areas. Furthermore, if the source function of a neighboring point ad the wave function of an another tsunami are given, unrecorded tsunami wave also can be estimated.

  • PDF

Analytical Rapid Prediction of Tsunami Run-up Heights: Application to 2010 Chilean Tsunami

  • Choi, Byung Ho;Kim, Kyeong Ok;Yuk, Jin-Hee;Kaistrenko, Victor;Pelinovsky, Efim
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • An approach based on the combined use of a 2D shallow water model and analytical 1D long wave run-up theory is proposed which facilitates the forecasting of tsunami run-up heights in a more rapid way, compared with the statistical or empirical run-up ratio method or resorting to complicated coastal inundation models. Its application is advantageous for long-term tsunami predictions based on the modeling of many prognostic tsunami scenarios. The modeling of the Chilean tsunami on February 27, 2010 has been performed, and the estimations of run-up heights are found to be in good agreement with available observations.

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.

Numerical Simulation of Tsunamis Considering the Characteristics of Propagation in the East Sea (동해 전파특성을 고려한 지진해일 모의)

  • Sohn, Dae-Hee;Choi, Moon-Kyu;Sohn, Il-Soo;Cho, Yon-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.172-176
    • /
    • 2007
  • In this study, the numerical model for simulation of tsunamis is constructed by using the dispersion-correction scheme, 2nd upwind scheme, dynamic linking method, and so forth. The composed numerical model is used to simulate a hitorical tsunami event. The target tsunami event is the 1983 Central East Sea Tsunami. And, the predicted run-up heights of the tsunami at Imwon port are very reasonable compared to available observed data.

  • PDF

NUMERICAL SIMULATION OF 1993 TSUNAMI FLOODING ONTO AONAE DISTRICT, OKUSHIRI ISLAND

  • Yamashita, Takao
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.3-6
    • /
    • 1996
  • On July 12, 1993, a large earthquake (M=7.8) occurred off the south-west of Hokkaido, Japan. The tsunami generated by this earthquake caused a disaster which took a heavy toll of lives, more than 200 persons dead, by the flooding of tsunami in the area of Aonae district in Okushiri island. Investigation after the disaster made clear that southern lowland was flooded by the tsunami coming from west about 5 min after the shock and the second tsunami from the east attacked eastern lowland of the Aonae District about 10 min after the shock. (omitted)

  • PDF

Inundation Map at Imwon Port with Past and Virtual Tsunamis (과거 및 가상 지진해일에 의한 임원항의 침수예상도)

  • Kim, Tae-Rim;Cho, He-Rin;Cho, Yong-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The scale of disaster and damage witnessed in the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami has motivated researchers in developing foolproof disaster mitigation techniques for safety of coastal communities. This study focuses on developing tsunami hazard map by numerical modeling at Imwon Port to minimize losses of human beings and property damage when a real tsunami event occurs. A hazard map is developed based on inundation maps obtained by numerical modeling of 3 past and 11 virtual tsunami cases. The linear shallow-water equations with manipulation of frequency dispersion and the non-linear shallow-water equations are employed to obtain inundation maps. The inundation map gives the maximum extent of expected flooded area and corresponding inundation depths which helps in identifying vulnerable areas for unexpected tsunami attacks. The information can be used for planning and developing safety zones and evacuation structures to minimize damage in case of real tsunami events.

Tsunami research in Korea: Part 1. Numerical analysis and laboratory experiments (우리나라의 지진해일 연구: Part 1. 수치해석과 수리실험)

  • Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.941-950
    • /
    • 2018
  • Tsunamis that have occurred around the Pacific Ocean rim over the past decades have taken a heavy toll on lives of human beings and property. The Eastern Coast of the Korean Peninsula is not safe from sudden tsunami attacks and has sustained tsunami damage in the past. In this review, the past, present, and future of some aspects of tsunami research in Korea have been introduced extensively. Tsunamis in Korea, numerical model simulating tsunami behaviors and laboratory experiments will be discussed. In the compainion review, field surveys for domestics and overseas tsunami events, countermeasures against tsunami attacks, furture research topics and concluding remarks will be described.

Evaluation of the relationship between maximum tsunami heights and fault parameters in Korea

  • Song, Min-Jong;Kim, Chang Hee;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.275-275
    • /
    • 2022
  • Tsunamis triggered by undersea earthquakes have the characteristic of longer wavelengths and can propagate a very long distance. Although the occurrence frequency of tsunami is low, it can cause casualties and properties. Historically, tsunamis that occurred on the western coast of Japan attacked the eastern coast of the Korean Peninsula and damaged the property and the loss of human life in 1983 and 1993. By tsunami in 1983 especially, 2 people were killed, and more than 200 casualties occurred. In addition, it caused 2 million dollars in property damage at Imwon Port. In 2011, The eastern cities of Japan: Iwate, Miyagi, Ibaraki, and Fukushima were damaged by a tsunami that occurred near onshore along the Pacific ocean and caused more than 300 billion dollars in property damage, and 20,000 casualties occurred. Moreover, those provoked nuclear power plant meltdown at Fukushima. In this study, it was carried out a relationship between maximum tsunami heights and fault parameters of earthquake: strike angle, dip angle, and slip angle at Imwon port. Those fault parameters are known that it does not relate to the magnitude of earthquake directly. Virtual tsunamis, which could be triggered by probable undersea earthquakes in the future, were investigated and mutual information based on probability and information theory was introduced to figure out the relationship between maximum tsunami height and fault parameters. Fault parameters were evaluated according to the strong relationship with maximum tsunami heights finally.

  • PDF

Application of Probabilistic Tsunami Hazard Analysis for the Nuclear Power Plant Site (원자력 발전소 부지에 대한 확률론적 지진해일 재해도 분석의 적용)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.265-271
    • /
    • 2015
  • The tsunami hazard analysis is performed for testing the application of probabilistic tsunami hazard analysis to nuclear power plant sites in the Korean Peninsula. Tsunami hazard analysis is based on the seismic hazard analysis. Probabilistic method is adopted for considering the uncertainties caused by insufficient information of tsunamigenic fault sources. Logic tree approach is used. Uljin nuclear power plant (NPP) site is selected for this study. The tsunamigenic fault sources in the western part of Japan (East Sea) are used for this study because those are well known fault sources in the East Sea and had several records of tsunami hazards. We have performed numerical simulations of tsunami propagation for those fault sources in the previous study. Therefore we use the wave parameters obtained from the previous study. We follow the method of probabilistic tsunami hazard analysis (PTHA) suggested by the atomic energy society of Japan (AESJ). Annual exceedance probabilities for wave height level are calculated for the site by using the information about the recurrence interval, the magnitude range, the wave parameters, the truncation of lognormal distribution of wave height, and the deviation based on the difference between simulation and record. Effects of each parameters on tsunami hazard are tested by the sensitivity analysis, which shows that the recurrence interval and the deviation dominantly affects the annual exceedance probability and the wave heigh level, respectively.