• Title/Summary/Keyword: tsunami

검색결과 395건 처리시간 0.031초

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

해저단에서의 장파의 비선형 변형 (Nonlinear Transformation of Long Waves at a Bottom Step)

  • Mrichina, Nina R.;Pelinovsky, Efim N.
    • 한국해안해양공학회지
    • /
    • 제4권3호
    • /
    • pp.161-167
    • /
    • 1992
  • 서로 다른 유한수심을 갖는 두 영역을 연결하는 해저단위로 전파하는 비분산 유한진폭장파를 고려한다. 2차원 운동을 가정하고, 파봉선이 단과 평행하며, 비점성류체에서의 비회전운동으로 본다. 유한진폭파의 변형을 기술하기 위하여 유한진폭 천해정식과, 단위의 연결부에서 Riemann 변수로 나타낸 질양보존 및 압력연속조건들을 사용한다. 식들에 의하면 Riemann 불변양이 일정한 네 조의 특성유선과 입사, 반사 및 전달파의 진폭을 관련지어 주는 2개의 비선형방정식이 정의된다. 얻어진 방정식계는 통상의 형태로는 해석하기가 어려워 지진 해일파에 실용적으로 사용할 수 있는 특수한 경우만 고려한다. 얻어진 결과들을 장파이론과 비교하였고 아주 작은 진폭의 파인 경우에도 뚜렷한 비선형 효과가 제시되었다.

  • PDF

MODELLING HONG KONG RESIDENTIAL CONSTRUCTION DEMAND: EXPERIENCES GAINED AND THEIR IMPLICATIONS

  • Ryan Y.C. Fan;S. Thomas Ng;James M.W. Wong
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.425-432
    • /
    • 2009
  • The construction industry has been a main pillar and serves as a regulator of the Hong Kong economy. Subsequently, the fluctuations in the level of construction output can induce significant rippling effects to the economy. The Asian Financial Crisis started in 1997 and the SARS outbreak in 2003 both introduced major challenges and impacts to the Hong Kong economy and consequently the construction sector. Such decline in the importance of construction has suggested a possible structural change in the sector. It is worth investigating the driving forces behind the construction demand and see if they have changed after the heavy impacts in the past decade. The above considerations have, therefore, been the motivation of the present study to model the Hong Kong residential construction demand through multiple regression technique which can identify the significant influencing factors to the residential demand. The residential construction is studied as it constitutes a significant portion of the total construction volume. The residential sector has great influence to the general economy of Hong Kong. It is found that the underlying market structure and the driving factors for Hong Kong residential demand before and after the Asian Economic Crisis and SARS outbreak are different, suggesting that the residential construction sector or even the larger construction industry may have undergone a major structural change as Hong Kong's economy approaches maturity. It is also observed that the past literatures on construction demand are mostly focusing on predicting demand under a stable economic environment. Hence, it is worth examining if it is possible to model during economic hardship when the residential sector fluctuate dramatically under different external impacts, such as the recent global financial tsunami.

  • PDF

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

쓰나미에 의한 유목의 발생과 거동의 수치해석적 연구 (Study on numerical analysis of driftwood generation and behavior by tsunami flow)

  • 강태운;장창래
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.66-66
    • /
    • 2021
  • 2011년에 일본 도호쿠 지방 태평양 해역에서 규모 9.0의 지진이 발생하여 거대한 쓰나미가 일본 본토 해안을 침수시켰다. 이로 인해, 정확한 피해규모가 파악되기 어려울 정도로 막대한 인명과 재산피해를 입게 되었다. 센다이지역의 경우 쓰나미로 인해 해안에 위치한 약 3.8 평방킬로미터의 방풍림이 모두 전복되었고 일부는 유목이 되어 쓰나미와 함께 내륙으로 흘러들어가 곳곳에 퇴적되어 농지를 훼손하고 가옥에 피해를 주었다. 따라서, 본 연구는 유목의 발생과 흐름에 따른 거동을 수치적으로 분석하여, 폭우나 쓰나미와 같은 거대흐름과 산지와 방풍림 등에서 발생하는 유목의 발생과 거동과정을 예측하고, 흐름과 유목 거동에 따른 피해지역을 선별할 수 있는 방법을 구축하기 위한 초기단계로서, 이를 위해 유목의 발생과정의 역학적 모델링을 수치모듈에 적용하였고 이를 활용하여 수치모의를 수행하였다. 흐름분석을 위해 쓰인 모형은 홍수범람 모형인 Nays2D Flood 이며 천수방정식을 기본으로 한다. 쓰나미의 흐름은 해안가의 방풍림지역을 상류단 경계조건으로 하여 발생 당시 관측된 수심변화를 본 모형의 상류단 경계조건으로 입력하였다. 상류단 경계조건에서 쓰나미의 유속은 수심에 따른 파속으로 계산하였다. 본 연구에서는 또한 유목의 발생과 흐름거동을 기존에 개발된 입자법 기반의 유목동역학모형을 활용하여 수치적으로 모델링 하였다. 유목은 유연성이 없는 원주형 강체로 가정하였고 초기설정으로는, 방풍림지역에 30만개의 유목이 하상의 수직방향으로 배치되어있는 것으로 가정하였다. 여기서, 본 연구에서는 쓰나미가 발생하면 흐름에 따른 항력으로 인해 수직방향으로 배치된 유목이 부러지며, 흐름과 함께 흘러가는 현상을 모델링하였다. 본 연구는 폭우나 쓰나미와 같은 거대흐름으로 인해 발생할 수 있는 유송잡물과 유목의 거동을 예측분석하는 기초연구자료로 활용될 수 있으며, 더 나아가 유목의 발생과정까지 수치적으로 재현하는 모델링을 수행하였기 추후에, 산지와 하천에서 발생할 수 있는 유송잡물의 발생과 연행 과정을 보다 세부적으로 예측할 수 있는 기초방법론으로 쓰일 수 있을 것으로 판단된다.

  • PDF

산사태 지진해일의 수리특성 분석에 관한 고찰 (On hydraulic characteristic analysis of landslide tsunami)

  • 서민장;이창민;이우동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.203-203
    • /
    • 2022
  • 일반적으로 지진해일은 지진, 화산에 의한 융기 또는 침강에 따른 급작스러운 해저지각 운동에 의해 발생하며, 이에 따른 수위변동과 유체운동을 일컫는다. 그 밖에 해안/해저 산사태, 운석 낙하, 빙하 붕괴와 같이 암석, 토사, 얼음, 운석이 바다, 호수의 수면과 충돌하여 해일이 발생하기도 한다. 이 산사태 해일의 피해사례는 많지 않지만, 대부분 인명피해를 동반한다. 이에 과거부터 수리모형실험을 통해 산사태로 생성된 해일의 전파과정을 조사하는 연구들이 수행되었다. 최근에는 컴퓨터 성능향상과 다양한 수치모델이 개발됨에 따라 수치해석이 많이 수행되고 있다. 그러나 산사태 해일의 생성을 직접 모의하기 위해서는 유체-구조 상호작용(FSI; fluid-structure interaction)을 고려할 수 있는 전산유체역학(CFD; computational fluid dynamics)해석이 요구되는 관계로 활발한 연구가 진행되지 않고 있다. 본 연구에서는 FSI에 기초하여 충돌모의에 특화된 LS-DYNA를 이용하여 산사태 해일의 생성, 전파 그리고 직립벽(댐)에서의 처오름 및 파압 등을 검토한다. 그리고 낙하물의 형상, 낙하 높이에 따라 생성된 해일이 댐에 미치는 영향을 분석한다. 또한, 이용하는 LS-DYNA 해석의 타당성 및 유효성을 확인하기 위하여 기존 수리모형실험에서 생성된 산사태 지진해일과 비교·검증한다. 수치해석 결과, 동일한 체적의 낙하물에서는 폭이 좁을수록 최대파고가 낙하물에 근접해 생성되었고, 폭이 넓을수록 파장이 길어지는 것을 확인할 수 있었다. 낙하물의 낙하높이가 높을수록 산사태 지진해일의 파고가 크게 생성되었다. 낙하물로부터 600m 지점에서 설치한 댐에서의 산사태 지진해일의 처오름은 파고 및 파장이 클수록 증가하였다. 산사태 지진해일의 파압 역시 처오름에 상응하게 나타났다. 그러므로 호소에서 산사태 해일이 발생한다면, 댐 및 제방의 안정성에 영향을 미칠 수 있을 것으로 판단된다.

  • PDF

조선시대(1392-1910) 해일 발생의 시공간적 분포 특성 (Spatio-temporal Distribution of Surges and Tsunamis in the Korean Peninsula from 1392 to 1910)

  • 김다해;홍성찬;최광희
    • 한국지형학회지
    • /
    • 제28권3호
    • /
    • pp.37-49
    • /
    • 2021
  • Analysis and prediction of storm surges are very important because the global warming has raised sea levels and increased the frequency of massive typhoons, accelerating damage of coastal flooding. However, the data for storm surge prediction is lacking due to the short history of observation in South Korea. The purpose of this study is to investigate the spatial and temporal characteristics of the previous surges and tsunamis based on the historical documents published during the Joseon Dynasty. In addition, we tried to evaluate the damage and spatial extent of such disasters, using the expressions about surge records including heights and number of administrative divisions. As a result, a total of 175 records of surges and tsunamis were compiled from 1392 to 1910: 145 events were extracted through the analysis of the ancient documents, and 30 events were from the previous research. Most of the strorm surges occurred along the west coast during summer season. More than half of the total surges were concentrated for 120 years from the mid 1600s to the mid 1700s, which was estimated to be highly relevant to the climate conditions in East Asia during the Little Ice Age. Hazardous areas by storm and tidal surges were also extracted, including Asan, Ganghwa, and Siheung during the Joseon Dyanisity period.

Messianism in Civilizational History: The Transformation of the Buddhist Messiah via Maitreya

  • DINH Hong Hai
    • 대순사상과 동아시아종교
    • /
    • 제3권2호
    • /
    • pp.71-92
    • /
    • 2024
  • The world we live in is becoming more convenient thanks to the inventions of science and technology. Still, the world is also becoming more and more unpredictable with the current situation of VUCA (Volatility, Uncertainty, Complexity, Ambiguity). The Covid-19 pandemic brought the biggest global disaster ever with 774,631,444 infected people and 7,031,216 deaths (WHO on February 11, 2024) but it seems that humanity is gradually forgetting this disaster. Meanwhile the economic stimulus packages worth trillions of dollars from governments after the pandemic have further caused the world debt bubble to swell. The bubble burst scenario is something that many economic experts fear. Apparently, in the transitional period of the early decades of the 21st century, the world's economic, cultural, political, social, natural, and environmental aspects have undergone profound transformations: from the real estate and finance crises in the United States since 2008; through the melting of the Arctic ice over the past several decades; to the double disaster of the earthquake and tsunami in Japan in 2011. Especially, in the context of the world economic crisis after the COVID-19 pandemic, the human achievements of the past thousands of years are in jeopardy of being wiped out in an instant. Many people are predicting a bad scenario for a chain collapse. Facing the signals of an imminent economic catastrophe based on the appearance of "the Gray Rhino, Black Swan and White Elephant," many drawn in by Eschatological thought declare that Doomsday will occur shortly. This is the time for many other people to hope for the incoming Messiah. The Messiah is said to appear when people feel despair or suffer a great disaster because faith in the Savior can help them overcome adversity mentally. This research will find out how adherents of Buddhism view and deal with civilizational crises by examining history via symbols associated with Maitreya as based upon the Buddhist Messiah, Maitreya.

2007년 3월 한국 서해안에 발생한 해양장파의 형성과 성장과정 (Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007)

  • 최병주;박용우;권경만
    • Ocean and Polar Research
    • /
    • 제30권4호
    • /
    • pp.453-466
    • /
    • 2008
  • In order to examine the generation mechanism of long ocean waves along the west coast of Korea and to understand the amplification process of the long ocean waves, sea level, atmospheric pressure and wind data observed every minute from 2007 March 29 to 2007 April 1 were analyzed and onedimensional numerical ocean model experiments were performed. An atmospheric pressure jump propagated southeastward from Backryungdo to Yeonggwang along the west coast of Korea with speed of $13{\sim}27\;m/s$ between 2007 March 30 23:00 and 2007 April 1 1:30. Average magnitude of pressure jump was 4.2 hPa. As a moving atmospheric jump propagated from north to south along the coast, long ocean waves were generated and the sea level abnormally rose or fell at Anheung, Kunsan, Wido and Yeonggwang. Average amplitude of sea level rise (or fall) was about 113.6 cm. In a one-dimensional numerical ocean model, nonlinear shallow water equations were numerically integrated and a moving atmospheric pressure jump with traveling speed of 24 m/s was used as an external force. While the atmospheric pressure jump travels over 60 m depth ocean, a long ocean wave is generated. Because the propagation speed of the atmospheric jump is almost equal to that of the long ocean wave, Proudman resonance occurs and the long ocean wave amplifies. As the atmospheric pressure jump moves into the coastal area shallower than 60 m, the speed of the long ocean wave decreases and Proudman resonance effect decreases. However, the amplitude of the long ocean wave increases and wave length becomes shorter because of shoaling effect. When the long ocean wave hits the land boundary, amplitude of the long ocean wave drastically amplifies due to reflection. Data analysis and numerical experiments suggest that the southeastward propagation of an atmospheric pressure jump over the shallow ocean, which is a necessary condition for Proudaman resonance, generated the long ocean waves along the west coast of Korea on 2007 March 31 and the ocean waves amplified due to shoaling effect in the coastal area and reflection at the shore.