• Title/Summary/Keyword: trypsin inhibitor.

Search Result 220, Processing Time 0.022 seconds

Antihypertensive Effects of Casein Hydrolysate in Spontaneously Hypertensive Rats (자연발증고혈압쥐에서 카제인 가수분해물의 혈압강하효과)

  • Kim, H.S.;In, Y.M.;Jeong, S.G.;Ham, J.S.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.483-490
    • /
    • 2002
  • The aim of this study was to determine if a low-molecular weight casein hydrolysate has an anti- hypertensive effect in spontaneously hypertensive rats (SHR). Prior to the in vivo experiment, the casein hydrolysate was confirmed to be resistant to gastrointestinal digestion by confirming the retention of its potency as an inhibitor of angiotensin I-concerting enzyme after incubation with pepsin, trypsin, or chymotrypsin. The in vivo anti-hypertensive effect of the hydrolysate was determined by the tail cuff method. Following an oral administration of the hydrolysate solution, the systolic blood pressure (SBP) decreased by 12.9% (-28.9mmHg; P<0.05) at 3 h after the administration at a dose of 500mg/kg body weight. When the hydrolysate was administered as an emulsion with 30% egg yolk, its anti-hypertensive effect was even more greater at the same dose(-30.8mmHg or -15.9%; P<0.01). In a 50-day long-term trial where the casein hydrolysate was administered once a day, the SBP-lowering effect of the hydrolysate was apparent (P<0.05) from day 35 through the end. Moreover, organ weights and plasma glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities of the administered SHR were not significantly different from those of controls at the end of the long-term trial.

Proteomic analysis of serum proteins responsive to styrene exposure (Styrene 노출에 반응을 보이는 혈청 단백질에 대한 프로테오믹스 분석)

  • Kim, Ki-Woong;Heo, Kyung-Hwa;Won, Yong Lim;Jeong, Jin Wook;Kim, Tae Gyun;Park, Injeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • By comparing the proteins from the workers exposed to styrene with the ones from controls, it may be possible to identify proteins that play a role in the occurrence and progress of occupational disease and thus to study the molecular mechanisms of occupational disease. In order to find the biomarkers for assessing the styrene effects early, before clinical symptoms develop and to understand the mechanisms of adverse health effects, we surveyed 134 employees, among whom 52 workers(30 male and 22 female) were chronically exposed to styrene in 10 glass-reinforced plastic boat manufacturing factories in Korea and 82 controls had never been occupationally exposed to hazardous chemicals including styrene. The age and drinking habits and serum biochemistry such as total protein, BUN and serum creatinine in both groups were significantly different. Exposed workers were divided into three groups according to exposure levels of styrene(G1, below 1/2 TLV; G2, 1/2 TLV to TLV; G3, above TLV). The mean concentration of airborne styrene in G1 group was $10.93{\pm}11.33ppm$, and those of urinary mandelic acid(MA) and phenylglyoxylic acid(PGA) were $0.17{\pm}0.21$ and $0.13{\pm}0.11g/g$ creatinine, respectively. The mean concentration of airborne styrene in G2 and G3 groups were $47.54{\pm}22.43$ and $65.33{\pm}33.47ppm$, respectively, and levels of urinary metabolites such as MA and PGA increased considerably as expected with the increase in exposure level of styrene. The airborne styrene concentration were significantly correlated to the urinary concentration of MA(r=0.784, p=0.000) and PGA(r=0.626, p<0.001). In the 2D electrophoresis, the concentration of five proteins including complement C3 precursor, alpha-1-antitrypsin(AAT), vitamin D binding protein precursor(DBP), alpha-1-B-glycoprotein(A1BG) and inter alpha trypsin inhibitor(ITI) heavy chain-related protein were significantly altered in workers exposed to styrene compared with controls. While expression of complement C3 precursor and AAT increased by exposure to styrene, expression of DBP, A1BG and ITI heavy chain-related protein decreased. These results suggest that the exposure of styrene might affects levels of plasma proteinase, carriers of endogenous substances and immune system. In particular, increasing of AAT with the increase in exposure level of styrene can explain the tissue damage and inflammation by the imbalance of proteinase/antiproteinase and decrease of DBP, A1BG and ITI heavy chain-related protein in workers exposed to styrene is associated with dysfunction and/or declination in immune system and signal transduction

Effects of Gamma Irradiation on Chemical Composition, Antinutritional Factors, Ruminal Degradation and In vitro Protein Digestibility of Full-fat Soybean

  • Taghinejad, M.;Nikkhah, A.;Sadeghi, A.A.;Raisali, G.;Chamani, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.534-541
    • /
    • 2009
  • The aim of this study was to evaluate the effects of gamma irradiation (${\gamma}$-irradiation) at doses of 15, 30 and 45 kGy on chemical composition, anti-nutritional factors, ruminal dry matter (DM) and crude protein (CP) degradibility, in vitro CP digestibility and to monitor the fate of true proteins of full-fat soybean (SB) in the rumen. Nylon bags of untreated or ${\gamma}$-irradiated SB were suspended in the rumens of three ruminally-fistulated bulls for up to 48 h and resulting data were fitted to a nonlinear degradation model to calculate degradation parameters of DM and CP. Proteins of untreated and treated SB bag residues were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Digestibility of rumen undegraded CP was estimated using the three-step in vitro procedure. The chemical composition of raw and irradiated soybeans was similar. Results showed that phytic acid in ${\gamma}$-irradiated SB at dose of 30 kGy was eliminated completely. The trypsin inhibitor activity of 15, 30 and 45 kGy ${\gamma}$-irradiated SB was decreased (p<0.01) by 18.4, 55.5 and 63.5%, respectively. From in sacco results, ${\gamma}$-irradiation decreased (p<0.05) the washout fractions of DM and CP at doses of 30 and 45 kGy, but increased (p<0.05) the potentially degradable fractions. Gamma irradiation at doses of 15, 30 and 45 kGy decreased (p<0.05) effective degradability of CP at a rumen outflow rate of 0.05 $h^{-1}$ by 4.4, 14.4 and 26.5%, respectively. On the contrary, digestibility of ruminally undegraded CP of irradiated SB at doses of 30 and 45 kGy was improved (p<0.05) by 12 and 28%, respectively. Electrophoretic analysis of untreated soybean proteins incubated in the rumen revealed that ${\beta}$-conglycinin subunits had disappeared at 2 h of incubation time, whereas the subunits of glycinin were more resistant to degradation until 16 h of incubation. From the SDS-PAGE patterns, acidic subunits of 15, 30 and 45 kGy ${\gamma}$-irradiated SB disappeared after 8, 8 and 16 h of incubation, respectively, while the basic subunits of glycinin were not degraded completely until 24, 48 and 48 h of incubation, respectively. It was concluded that ${\gamma}$-irradiated soybean proteins at doses higher than 15 kGy could be effectively protected from ruminal degradation.

The Effect of Soybean Galactooligosaccharides on Nutrient and Energy Digestibility and Digesta Transit Time in Weanling Piglets

  • Zhang, Liying;Li, Defa;Qiao, Shiyan;Wang, Jituan;Bai, Lu;Wang, Zongyi;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1598-1604
    • /
    • 2001
  • Eight $12.4{\pm}0.6kg$ initial body weight crossbred barrows were used to determine the effect of soybean galactooligosaccharides on nutrient and energy digestibility, and digesta transit time. Four dietary treatments were utilized in this trial. Treatment one was a corn-soybean meal based diet (SBM) containing raffinose and stachyose at the levels of 0.16% and 0.75%, respectively. Treatment two (control) was a corn-HP300 (soybean concentrate protein) diet. In treatments three and four, 1.1% and 2.2% commercial stachyose was added to the control diet to provide total dietary stachyose at the levels of 1% and 2%, respectively. The soybean galactooligosaccharides (raffinose + stachyose) level in treatment one was slightly lower compared to that in treatment three. Three collection periods were run with two pigs for each treatment/period. There was a 4 d adjustment period followed by a 3 d collection period. The results showed that the nitrogen retention (86.79%) of pigs fed treatment two diet was higher than that of pigs fed treatment one by 5.2% (p<0.05). The nitrogen retention of treatment three was intermediate 83.09%. The apparent fecal digestibility of all amino acids in treatment two was numerically highest, followed by treatments three and four. However, there were no significant difference among groups (p>0.05). The dry matter (DM), organic matter (OM), crude protein (CP), and crude fiber (CF) digestibility numerically decreased as the soybean galactooligosaccharides level increased, but were not significantly different (p>0.05). Chromium content in feces (from the inclusion of 0.3% chromic oxide in the diets) differed among treatments (p<0.05) at 15 h, 18 h, and 21 h after eating. This showed that the digesta transit time was differed significantly among treatments. Treatment four was the shortest, followed by treatment three, SBM and control. The results demonstrated that in the absence of antinutritional factors and soybean antigen protein, inclusion of 1% and 2% stachyose in corn-HP300 diet has no significant effect on the digestibility of DM, OM, CP, CF and amino acids. When the soybean galactooligosaccharide level in diet one and diet three were adjusted to be almost the same, antinutritional factors such as trypsin inhibitor and soybean antigen protein could decrease the nutrient digestibility and nitrogen retention rate of diet. High levels of soybean galactooligosaccharides shortened the digesta transit time in the intestinal tract. This trial suggested that the total level of soybean galactooligosaccharides (stachyose+raffinose) in the weanling piglet diet is better not to exceed 1% when common soybean meal is used as main protein source.

The Stability of Aspalatone and Aspirin in Buffered Aqueous Solution (완충 수용액중 아스파라톤 및 아스피린의 안정성)

  • 곽혜선;전인구
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.130-130
    • /
    • 1995
  • AM, SM 및 ASA는 수용액중에서 겉보기 1차반응에 따라 분해되었으며 보존온도가 높을수록 분해가 촉진되는 온도 의존성을 나타내었다. AM의 분해경로는 pH 1.22 및 pH 7.0 이상에서는 AM$\longrightarrow$ SM $\longrightarrow$ SA의 경로로 주로 분해되었으며 pH 2.01 - 6.08의 범위에서는 AM $\longrightarrow$ASA$\longrightarrow$SA의 경로로 분해되는 양상을 보였다. 또 pH가 분해에 미치는 영향을 pH-rate profile로 나타낸 결과 AM, SM 및 ASA의 최대안정 pH는 각각 4.0, 3.0, 2.0 부근이 있고 이 조건에서의 분해 반감기는 114, 168, 113 hr로 나타났다. 전체적으로 보면 pH 2.0 이하에서는 ASA가 AM 보다 약간 안정한 편이나 pH 2.0-8.0 사이에서는 AM의 분해속도가 ASA보다 현저히 낮았다. 또 AM은 pH 7.0 이상에서, SM은 pH 6.0 이상에서, ASA는 9.0 이상에서 특수염기촉매반응에 따라 분해가 이루어지는 것을 알 수 있었다. 이온강도($\mu$)의 영향으로는 pH 7.0에서 이온강도가 0.115에서 1.0으로 증가할수록 $\mu$$^{1}$2/에 대해 AM의 분해속도정수가 직선적으로 완만하게 감소되었다. 또 완충수용액 중 AM의 가수분해 억제효과를 검토하기 위해 시클로덱스트린류를 첨가하였을 때, $\beta$-시클로덱스트린과 히드록시프로필기-$\beta$-시클로덱스트린은 AM의 분해를 각각 1.6배 및 1.1배 촉진시켜 촉매적으로 작용하였으며 디메칠-$\beta$-시클로덱스트린은 약 3.2배 분해속도를 억제시켜 안정화제로 작용하였다.Zn^{2+}$, soybean trypsin inhibtor에 의해 25~50% 정도, serine proteinase inhibitor인 phenylmethylsulfonyl floride에 의해 80%정도 활성이 억제되는 특성이 있음을 규명하였다.면역환성 (immunoreactivity)이 나타났고 pyramidal cell layer (PCL)와 glia에 SOD-1이 강하게 염색되었다. APT 병용 투여로 상당수의 경련이 일어나지 않은 흰쥐는 해마의 DG에 FRA가 경미하게 염색되었고, PCL에 SOD-1도 경미하게 나타났으나, 경련이 나타난 쥐에서는 KA만을 투여한 흰쥐와 구별되지 않았다. 이상의 APT의 항산화 효과는 KA로 인한 뇌세포 변성 개선에 중요한 인자로 작용할 것으로 사료되나, 보다 명확한 APT의 기전을 검색하고 직접 임상에 응응하기 위하여는 보다 다양한 실험 조건이 보완되어야 찰 것으로 생각된다. 항우울약들의 항혈소판작용은 PKC-기질인 41-43 kD와 20 kD의 인산화를 억제함에 기인되는 것으로 사료된다.다. 것으로 사료된다.다.바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl$_{4}$$^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$$^{2-}$ , ZnCl$_{3}$$^{-}$같은 이온과 MgCl$^{+}$, MgCl$_{2}$같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 NH$_{4}$$^{+}$의 경우 Dv값이 제일 작았다. 바. 본 연구의 목적중의 하나인 인체유해 중금속이온인 Hg(II), Cd(II)등이 NaCl같은 염화물이 함유된 시료용액에 공해이온으로 존재할 경우 흡착에 의한 제거가 가능하다. 한편 이같

  • PDF

Effects of fermented soybean meal with Bacillus velezensis, Lactobacillus spp. or their combination on broiler performance, gut antioxidant activity and microflora

  • Tsai, C.F.;Lin, L.J.;Wang, C.H.;Tsai, C.S.;Chang, S.C.;Lee, T.T.
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1892-1903
    • /
    • 2022
  • Objective: A series of experiment were conducted to evaluate the effects of replacing a part of soybean meal (SBM) at 6% of broiler diets with fermented soybean meal (FSBM) obtained by single or two-stage fermentation by measuring growth performance, antioxidant activity in the jejunum and distal intestinal microflora. Methods: Soybean meal samples were prepared by single-stage fermentation using Bacillus velezensis (Bv) (FSBMB), or Lactobacillus spp. (as commercial control) (FSBML). Additional SBM sample was prepared by two-stage fermentation using Bv and subsequently using Lactobacillus brevis ATCC 367 (Lb) (FSBMB+L). Enzyme activity, chemical composition, trichloroethanoic acid-nitrogen solubility index (TCA-NSI) and antioxidant activity were measured. Then, in an in vivo study, 320 Ross308 broilers were divided into four groups with ad libitum supply of feed and water. Four groups were fed either a corn-soybean meal diet (SBM), or one of fermented SBM diets (FSBMB+L, FSBMB, and FSBML). Growth, serum characteristics, microflora, and the mRNA expression of selected genes were measured. Results: Compared to SBM, FSBMB+L contained lower galacto-oligosaccharide, allergic protein, and trypsin inhibitor, and higher TCA-NSI by about three times (p<0.05). Reducing power and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging ability correlated positively with the TCA-NSI content in FSBM. Growth performances were not significantly different among four groups. In jejunum of 35-day-old broilers, partial replacement of SBM by FSBMB+L increased the activity of superoxide dismutase and catalase (CAT), and the FSBMB group had the highest catalase activity (p<0.05). Partial replacement of SBM by FSBM increased relative mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and peptide transporter 1 (PepT1) (p<0.05); however, FSBMB+L increased CAT mRNA level to 5 times of the control (p<0.05). Conclusion: Using Bv- and Lb-processed SBM through two-stage fermentation to partially replace 6% of diets will improve the gut's antioxidant activity under commercial breeding in broilers.

Current Status and Perspectives of Quality Improvement in Sesame (참깨 품질 연구의 현황과 문제점 및 전망)

  • Lee, Bong-Ho;Lee, Jung-Il;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.s01
    • /
    • pp.86-97
    • /
    • 1988
  • Sesame(Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. The seed of sesame is used in a variety of ways as food. The whole seed may be eaten raw, either roasted or parched, or fed to birds and stock. Sesame oil is used as a salad or cooking oil, in shortening, margarine and in the manufacture of soap. Minor uses are as a fixative in the perfume industry and formerly as a carrier for fatsoluble substances in pharmaceuticals such as penicillin. One of the minor constituents of sesame oil, sesamin, is used for its synergistic effect in pyrethrin insecticides, in addition of a small quantity of this substance markedly increases the effectiveness of fly sprays. The meal remaining after oil extraction can be used as and animal feed-stuff or as manure. In general sesame meal is considered to be equal to cottonseed or soybean meal as a protein supplement for livestock and poultry. It is especially high in certain amino-acids such as methionine, which is low in soybean meal, and thus can be combined with it or similar meal to form a more balanced ration. An attempt to summarize the literature review on quality improvement of sesame was made to discuss the accomplishments of the past and perspectives in the future. The reviews on quality improvement of sesame were mainly discussed in connection with the cultural practices and genetic informations in current status. The emphasis focussed on environmental variation of quality in cultural practices, such as harvest time, variety by location, climatic condition, fertilizer application, and growth regulator treatment. On the genetic variation of quality, it was discussed on variety background, mutation breeding, correlations, and inheritance of quality related characteristics. It also was discussed on relationship between quality and plant traits, storage condition or period, and seed coat color. Moreover, current research status were reviewed on some minor elements such as sesamin, oxalic acid, and trypsin inhibitor. As a results of the review, the lack of an effort to quality improvement in each utilization area was indicated as a problem area. More active efforts for the improvement of quality were also insufficient to incorporate the available genes for quality in breeding method or collection and analysis of breeding materials. Therefore, researches in the future would be recommended to emphasize on these problem areas.

  • PDF

Breeding of Green Soybean Strain with Green Cotyledon and Tetra Null Genotype (Tetra null 유전자형과 녹색종피 및 자엽을 가진 콩 계통 육종)

  • Sarath Ly;Jeong Hwan Lee;Hyeon Su Oh;Se Yeong Kim;Jin Young Moon;Jong Il Chung
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.632-638
    • /
    • 2023
  • A soybean cultivar with a green seed coat and cotyledon contains high levels of lutein, which is beneficial for eye health. Plus, antinutritional components such as lipoxygenase, Kunitz trypsin inhibitor (KTI), lectin and stachyose exist in the mature seed. The genetic elimination of these antinutritional factors is a necessary step in green soybean breeding. This research was conducted to improve a new green soybean line with the green cotyledon and tetra null genotype (lox1lox2lox3tilers2) in terms of lipoxygenase, KTI, lectin and stachyose. We used five germplasms to develop a breeding population. A total of 69 F2 seeds were obtained from the cross of parent 1 and parent 2, and from those, 21 F2 seeds were selected that had the green seed coat color, and which were free of lectin protein. Next, four F2 plants with the green seed coat and tetra null genotype were selected from the breeding population derived from four genotypes. The absence of lipoxygenase, KTI and lectin proteins was confirmed in the F5 strain. The breeding line has a green seed coat, green cotyledon and white hilum color. The 100-seed weight and stachyose content for the breeding line were 30.7 g and 2.40 g/kg, respectively. The line selected in this study could be used as a cultivar or parent to improve colored soybean cultivars through the removal of antinutritional components such as lip- oxygenase, KTI, lectin and stachyose.

A Gelatinase A Isoform, GA110, of Human Follicular Fluid Is Degraded by the Bovine Oviductal Fluid Component (소의 수란관액에 의한 사람 난포액의 Gelatinase A 동위효소인 GA110의 분해)

  • Kim, Min-Jung;Kim, Ji-Young;Leec, Seung-Jae;Yoon, Yong-Dal;Cho, Dong-Jae;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • When mammalian oocytes ovulate into the oviduct, associating follicular fluid components are exposed to the oviductal environment, possibly resulting in the mutual interaction between fillicu1ar and oviductal fluids. In the Present study, we have demonstrated for the first time that components of fallicular fluid could be modified by the oviductal fluid. Gelatin zymographic analyses of human follicular fluid (hFF) obtained from IVF patients showed consistently the presence of 110 kDa gelatinase (GA110) in addition to many bands among which 62 kDa gelatinase was predominant. Addition of EDTA or phenanfhroline to the gelatinase substrate buffer during gel incubation abolished GA110 band whereas phenylmethylsulffnyl fluoride (PMSF) did not. In contrast, bovine oviductal fluid(bOF) exhibited only 62 kDa gelatinase. Surprisingly, when bOF was added to hFF in 1:1 ratio and then the mixture was incubated for 3 h at 37$^{\circ}$C, GA110 of hFF disappeared. Disappearance of GA110 by bOF was observed even within 30 min after mixing with hFF. Addition of aminophenylmercuric acetate (APMA) to hFF also abolished enzymatic activity of GA110 but increased the activityof 62 kDa gelatinase. However, APMA abolished many other gelatinases as well unlike bOF. Interestingly, treatment of hFF with EDTA for 3 h remarkably increased the enzymatic activity of GA110 but not that of other gelatinases. Addition of phenanthroline, PMSF or soybean trypsin inhibitor (SBTI) did not affect overall gelatinase activities. Again, addition of bOF to the hFF pretreated with any of the above proteinase inhibitors abolished the appearance of GA110. Human serum also showed GAI 10 of which activity was greatlyenhanced by EDTA treatment. Similar to hFF, serum GA110 also disappeared by the addition of bOF. Human granulosa cell homogenate did not reveal any appreciable gelatinase activity except 92 kDa gelatinase. Anti-human gelatinase A antibody reacted with 62 kDa gelatinase of hFF. Based upon these results, it is concluded that bOF could selectively degrade an isoform of gelatinase A present in hFF and human serum.

  • PDF

Selection of a Soybean Line with Brown Seed Coat, Green Cotyledon, and Tetra-Null Genotype (갈색종피와 녹색자엽 및 Tetra Null 유전자형을 가진 콩 계통 선발)

  • Sarath Ly;Hyeon Su Oh;Se Yeong Kim;Jeong Hwan Lee;Jong Il Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.114-120
    • /
    • 2023
  • Soybean is the one of the most important crops for providing quality vegetable protein to umans and livestock. Soybean cultivars with a brown seed coat have a wide range of antioxidant benefits because of the flavonoid components. However, they also contain lectin, 7S α′ subunit, lipoxygenase, and Kunitz trypsin inhibitor (KTI) proteins that can be allergenic and digestive inhibitors and reduce processing aptitude. Genetic removal of these four proteins is necessary in soybean breeding. Therefore, this study was conducted to select a new line with brown seed coat, green cotyledon, and tetra-null genotype (lecgy1lox1lox2lox3ti) for lectin, 7S α′ subunit, lipoxygenase, and KTI proteins in the mature seed. Five germplasms were used to create breeding population. From a total of 58 F2 plants, F2 plants with lele genotype were selected using a DNA marker, and F3 seeds with a brown seed coat, green cotyledon, and the absence of 7S α′ subunit protein were selected. Three lines (S1, S2, and S3) were developed. Genetic absence of lectin, 7S α′ subunit, lipoxygenase, and KTI proteins was confirmed in F6 seeds of the three lines, which had a brown seed coat, green cotyledons, and a white hilum. The 100 seed weights of the three lines were 26.4-30.9 g, which were lower than 36 g of the check cultivar - 'Chungja#3'. The new S2 line with 30.9 g hundred seed weight can be used as a parent to improve colored soybean cultivars without antinutritional factors such as lectin, 7S α′ subunit, lipoxygenase, and KTI proteins.