• Title/Summary/Keyword: truss network model

Search Result 14, Processing Time 0.019 seconds

A Study on Adaptation of Neural Network to Warren Truss Design (와렌 트러스 설계에의 신경망 적용에 관한 연구)

  • Shin, Dong Cheol;Lee, Seung Chang;Cho, Young Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.413-422
    • /
    • 2003
  • Most engineers tend to rely on their intuition or existing data in formulating structural design or preliminary estimate of various conditions. Because of these variations, the artificial neural network is used as an alternative design model of the warren truss since it can handle uncertainty through the probability method. This research validated the approximate structural design model of the warren truss, with its proper parameter values of the neural network and design process falling within 10 percent torrence of the different designs that resulted between this model and the MIDAS program. The suggested model for the process was adapted for the truss design using the member section table, while time saving and efficiency are based on the allowed range of torrence.

Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence

  • Wang, Licheng;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.125-142
    • /
    • 2011
  • In the present paper, a numerical simulation method based on mesoscopic composite structure of concrete, the truss network model, is developed to evaluate the diffusivity of concrete in order to account for the microstructure of concrete, the binding effect of chloride ions and the chloride concentration dependence. In the model, concrete is described as a three-phase composite, consisting of mortar, coarse aggregates and the interfacial transition zones (ITZs) between them. The advantage of the current model is that it can easily represent the movement of mass (e.g. water or chloride ions) through ITZs or the potential cracks within concrete. An analytical method to estimate the chloride diffusivity of mortar and ITZ, which are both treated as homogenious materials in the model, is introduced in terms of water-to-cement ratio (w/c) and sand volume fraction. Using the newly developed approaches, the effect of cracking of concrete on chloride diffusion is reflected by means of the similar process as that in the test. The results of calculation give close match with experimental observations. Furthermore, with consideration of the binding capacity of chloride ions to cement paste and the concentration dependence for diffusivity, the one-dimensional nonlinear diffusion equation is established, as well as its finite difference form in terms of the truss network model. A series of numerical analysises performed on the model find that the chloride diffusion is substantially influenced by the binding capacity and concentration dependence, which is same as that revealed in some experimental investigations. This indicates the necessity to take into account the binding capacity and chloride concentration dependence in the durability analysis and service life prediction of concrete structures.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge

  • Nguyen, Duong Huong;Tran-Ngoc, H.;Bui-Tien, T.;De Roeck, Guido;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2020
  • This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can accurately identify damage level.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

Development of the Stress Path Search Model using Triangulated Irregular Network and Refined Evolutionary Structural Optimization (불규칙 삼각망과 수정된 진화론적 구조 최적화 기법을 이용한 평면구조의 응력 경로 탐색 모델의 개발)

  • Lee, Hyung-Jin;Choi, Won;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.37-46
    • /
    • 2007
  • In designing the structure, the stress path is the basic data. But the stress path is not standardized to analysis the structure. So the one-dimensional frame element structure model with the triangle irregular network is used to solve the problem. And the refined evolutionary structural optimization(RESO) used in structural topology optimization is applied to this study. Through this process, the search method of the stress path is advanced and the burden of the calculation. is reduced.

Development of a Stress Path Search Model of Evolutionary Structural Optimization Using TIN (점진적 최적화 기법에서 불규칙 삼각망을 이용한 평면구조의 응력경로 탐색모델의 개발)

  • Kim, Nam-Su;Lee, Jeong-Jae;Yoon, Seong-Soo;Kim, Yoon-Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.65-71
    • /
    • 2004
  • Stress Path Search Model of Evolutionary Structural Successive Optimization (SPSMESO) using Triangular Irregular Network(TIN) was developed for improving over burden at initial design of ESO and strict stress direction of strut-and-tie model and truss model. TIN was applied for discretizing structures in flexible stress path and segments of TIN was analyzed as one-dimensional line element for calculating stress. Finally, stress path was searched using ESO algorithm. SPSMESO was efficient to express the direction of stress for 2D structure and time saving.

Damage localization and quantification of a truss bridge using PCA and convolutional neural network

  • Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.673-686
    • /
    • 2022
  • Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.

BPN Based Approximate Optimization for Constraint Feasibility (구속조건의 가용성을 보장하는 신경망기반 근사최적설계)

  • Lee, Jong-Soo;Jeong, Hee-Seok;Kwak, No-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.141-144
    • /
    • 2007
  • Given a number of training data, a traditional BPN is normally trained by minimizing the absolute difference between target outputs and approximate outputs. When BPN is used as a meta-model for inequality constraint function, approximate optimal solutions are sometimes actually infeasible in a case where they are active at the constraint boundary. The paper describes the development of the efficient BPN based meta-model that enhances the constraint feasibility of approximate optimal solution. The modified BPN based meta-model is obtained by including the decision condition between lower/upper bounds of a constraint and an approximate value. The proposed approach is verified through a simple mathematical function and a ten-bar planar truss problem.

  • PDF