Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.1.035

Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge  

Nguyen, Duong Huong (Department of Electrical energy, metals, mechanical constructions and systems, Faculty of Engineering and Architecture, Ghent University)
Tran-Ngoc, H. (Department of Electrical energy, metals, mechanical constructions and systems, Faculty of Engineering and Architecture, Ghent University)
Bui-Tien, T. (Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications)
De Roeck, Guido (Department KU Leuven, Department of Civil Engineering, Structural Mechanics)
Wahab, Magd Abdel (Division of Computational Mechanics, Ton Duc Thang University)
Publication Information
Smart Structures and Systems / v.26, no.1, 2020 , pp. 35-47 More about this Journal
Abstract
This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can accurately identify damage level.
Keywords
transmissibility; machine learning algorithm; Artificial Neural Networks (ANNs); Structural Health Monitoring (SHM); large-scale truss bridge;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Devriendt, C. and Guillaume, P. (2008), "Identification of modal parameters from transmissibility measurements", J. Sound Vib., 314(1-2), 343-356. https://doi.org/10.1016/j.jsv.2007.12.022   DOI
2 Dooms, D., Jansen, M., De Roeck, G., Degrande, G., Lombaert, G., Schevenels, M. and Francois, S. (2010), "StaBIL: A Finite Element Toolbox for Matlab", VERSION 2.0 USER'S GUIDE.
3 Farrar, C.R. and Worden, K. (2006), "An introduction to structural health monitoring", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 303-315.   DOI
4 Fawcett, T. (2004), "ROC graphs: Notes and practical considerations for researchers", Machine Learning, 31(1), 1-38.
5 Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", CMCCOMPUTERS MATERIALS & CONTINUA, 59(2), 433-456.   DOI
6 Hakim, S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., Int. J., 14, 159-189. https://doi.org/10.12989/sss.2014.14.2.159   DOI
7 Johnson, T.J. and Adams, D.E. (2002), "Transmissibility as a differential indicator of structural damage", J. Vib. Acoust., 124(4), 634-641. https://doi.org/10.1115/1.1500744   DOI
8 Peeters, B., Maeck, J. and De Roeck, G. (2001), "Vibration-based damage detection in civil engineering: excitation sources and temperature effects", Smart Mater. Struct., 10(3), 518. https://doi.org/10.1088/0964-1726/10/3/314   DOI
9 Roeck, G.D. (2003), "The state-of-the-art of damage detection by vibration monitoring: the SIMCES experience", J. Struct. Control, 10(2), 127-134. https://doi.org/10.1002/stc.20   DOI
10 Nguyen, T.Q., Nguyen, T.T., Nguyen-Xuan, H. and Ngo, N.K. (2019b), "A Correlation Coefficient Approach for Evaluation of Stiffness Degradation of Beams Under Moving Load", Comput. Mater. Continua, 61(1), 27-53.   DOI
11 Nguyen, T.Q., Tran, L.Q., Nguyen-Xuan, H. and Ngo, N.K. (2019c), "A statistical approach for evaluating crack defects in structures under dynamic responses", Nondestruct. Test. Eval., 1-32. https://doi.org/10.1080/10589759.2019.1699086
12 Peeters, B. and De Roeck, G. (2001), "One-year monitoring of the Z24-Bridge: environmental effects versus damage events", Earthq. Eng. Struct. Dyn., 30(2), 149-171. https://doi.org/10.1002/1096-9845(200102)30:2<149::AIDEQE1>3.0.CO;2-Z   DOI
13 Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641   DOI
14 Barai, S. and Pandey, P. (1997), "Time-delay neural networks in damage detection of railway bridges", Adv. Eng. Software, 28(1), 1-10. https://doi.org/10.1016/S0965-9978(96)00038-5   DOI
15 Brincker, R., Andersen, P. and Zhang, L. (2002), "Modal identification and damage detection on a concrete highway bridge by frequency domain decomposition", The Structural Engineering World Conference: SEWC. Citeseer.
16 Brownjohn, J.M. (2006), "Structural health monitoring of civil infrastructure", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 589-622. https://doi.org/10.1098/rsta.2006.1925   DOI
17 Brownjohn, J., Rizos, C., Tan, G.-H. and Pan, T.-C. (2004), "Realtime long-term monitoring and static and dynamic displacements of an office tower, combining RTK GPS and accelerometer data".
18 Sanayei, M., Phelps, J.E., Sipple, J.D., Bell, E.S. and Brenner, B.R. (2011), "Instrumentation, nondestructive testing, and finiteelement model updating for bridge evaluation using strain measurements", J. Bridge Eng., 17(1), 130-138. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000228   DOI
19 Sahin, M. and Shenoi, R. (2003), "Quantification and localisation of damage in beam-like structures by using artificial neural networks with experimental validation", Eng. Struct., 25(14), 1785-1802. https://doi.org/10.1016/j.engstruct.2003.08.001   DOI
20 Sampaio, R., Maia, N., Ribeiro, A. and Silva, J. (2001), "Transmissibility techniques for damage detection", Proceedings of the International Modal Analysis Conference, pp. 1524-1527.
21 Specht, D.F. (1991), "A general regression neural network", IEEE Transact. Neural Networks, 2(6), 568-576.   DOI
22 Thyagarajan, S., Schulz, M., Pai, P. and Chung, J. (1998), "Detecting structural damage using frequency response functions", J. Sound Vib., 210(1), 162-170.   DOI
23 Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Abdel Wahab, M. (2018), "Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. https://doi.org/10.2749/101686697780494563   DOI
24 Wahab, M.A. and De Roeck, G. (1997), "Effect of temperature on dynamic system parameters of a highway bridge", Struct. Eng. Int., 7(4), 266-270. https://doi.org/10.2749/101686697780494563   DOI
25 Wahab, M.A. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: application to a real damage scenario", J. Sound Vib., 226(2), 217-235. https://doi.org/10.1006/jsvi.1999.2295   DOI
26 Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Process., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002   DOI
27 Weinstein, J.C., Sanayei, M. and Brenner, B.R. (2018), "Bridge damage identification using artificial neural networks", J. Bridge Eng., 23(11), 04018084. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001302   DOI
28 Worden, K., Manson, G. and Allman, D. (2003), "Experimental validation of a structural health monitoring methodology: Part I. Novelty detection on a laboratory structure", J. Sound Vib., 259(2), 323-343. https://doi.org/10.1006/jsvi.2002.5168   DOI
29 Wu, X., Ghaboussi, J. and Garrett Jr, J. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 424), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
30 Yan, W.-J., Zhao, M.-Y., Sun, Q. and Ren, W.-X. (2019), "Transmissibility-based system identification for structural health Monitoring: Fundamentals, approaches, and applications", Mech. Syst. Signal Process., 117, 453-482. https://doi.org/10.1016/j.ymssp.2018.06.053   DOI
31 Yeung, W. and Smith, J. (2005), "Damage detection in bridges using neural networks for pattern recognition of vibration signatures", Eng. Struct., 27(5), 685-698. https://doi.org/10.1016/j.engstruct.2004.12.006   DOI
32 Zang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390   DOI
33 Zhou, Y.L. (2015), "Structural health monitoringby using transmissibility", Industriales.
34 Zhou, Y.-L., Maia, N.M., Sampaio, R.P. and Wahab, M.A. (2017), "Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure", Struct. Health Monitor., 16(6), 711-731. https://doi.org/10.1177/1475921716680849   DOI
35 Zhou, Y.-L. and Abdel Wahab, M. (2017), "Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network", Mechanika, 23, 688-695. https://doi.org/10.5755/j01.mech.23.5.15339
36 Zhou, Y.-L. and Wahab, M.A. (2016), "Rapid early damage detection using transmissibility with distance measure analysis under unknown excitation in long-term health monitoring", J. Vibroeng., 18(7), 4491-4499. https://doi.org/10.21595/jve.2016.17226   DOI
37 Zhou, Y.-L., Figueiredo, E., Maia, N. and Perera, R. (2015), "Damage detection and quantification using transmissibility coherence analysis", Shock Vib., 2015. https://doi.org/10.1155/2015/290714
38 Zhou, Y.-L., Maia, N.M. and Abdel Wahab, M. (2018), "Damage detection using transmissibility compressed by principal component analysis enhanced with distance measure", J. Vib. Control, 24(10), 2001-2019. https://doi.org/10.1177/1077546316674544   DOI
39 Deraemaeker, A., Preumont, A., Reynders, E., De Roeck, G., Kullaa, J., Lamsa, V., Worden, K., Manson, G., Barthorpe, R. and Papatheou, E. (2010), "Vibration-based structural health monitoring using large sensor networks", Smart Struct. Syst., Int. J., 6(3), 335-347. https://doi.org/10.12989/sss.2010.6.3.335   DOI
40 Cruz, P.J. and Salgado, R. (2009), "Performance of vibrationbased damage detection methods in bridges", Comput.-Aid. Civil Infrastruct. Eng., 24(1), 62-79. https://doi.org/10.1111/j.1467-8667.2008.00546.x   DOI
41 Maia, N.M., Almeida, R.A., Urgueira, A.P. and Sampaio, R.P. (2011), "Damage detection and quantification using transmissibility", Mech. Syst. Signal Process., 25(7), 2475-2483. https://doi.org/10.1016/j.ymssp.2011.04.002   DOI
42 Kaveh, A. and Maniat, M. (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., Int. J., 15(5), 1253-1270. https://doi.org/10.12989/sss.2015.15.5.1253   DOI
43 Koo, K.-Y., Brownjohn, J., List, D. and Cole, R. (2013), "Structural health monitoring of the Tamar suspension bridge", Struct. Control Health Monitor., 20(4), 609-625. https://doi.org/10.1002/stc.1481   DOI
44 Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges consi1dering errors in baseline finite element models", J. Sound Vib., 280(3-5), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003   DOI
45 Maeck, J., Peeters, B. and De Roeck, G. (2001), "Damage identification on the Z24 bridge using vibration monitoring", Smart Mater. Struct., 10(3), 512. https://doi.org/10.1088/0964-1726/10/3/313   DOI
46 Maia, N., Silva, J., Almas, E. and Sampaio, R. (2003), "Damage detection in structures: from mode shape to frequency response function methods", Mech. Syst. Signal Process., 17(3), 489-498. https://doi.org/10.1006/mssp.2002.1506   DOI
47 Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A. (2008), "Damage detection of truss bridge joints using Artificial Neural Networks", Expert Syst. Applicat., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008   DOI
48 Meruane, V. (2015), "Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data", J. Comput. Civil Eng., 30(3), 04015042. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000517   DOI
49 Nguyen, H.D., Bui, T.T., De Roeck, G. and Wahab, M.A. (2018), "Damage Detection in Simply Supported Beam Using Transmissibility and Auto-Associative Neural Network", International Conference on Numerical Modelling in Engineering, pp. 177-186.
50 Nguyen, D.H., Bui, T.T., De Roeck, G. and Wahab, M.A. (2019a), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., Int. J., 71(2), 175-183. https://doi.org/10.12989/sem.2019.71.2.175