• Title/Summary/Keyword: tropospheric delay

Search Result 71, Processing Time 0.022 seconds

Architecture Design for Maritime Centimeter-Level GNSS Augmentation Service and Initial Experimental Results on Testbed Network

  • Kim, Gimin;Jeon, TaeHyeong;Song, Jaeyoung;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In this paper, we overview the system development status of the national maritime precise point positioning-real-time kinematic (PPP-RTK) service in Korea, also known as the Precise POsitioning and INTegrity monitoring (POINT) system. The development of the POINT service began in 2020, and the open service is scheduled to start in 2025. The architecture of the POINT system is composed of three provider-side facilities-a reference station, monitoring station, and central control station-and one user-side receiver platform. Here, we propose the detailed functionality of each component considering unidirectional broadcasting of augmentation data. To meet the centimeter-level user positioning accuracy in maritime coverage, new reference stations were installed. Each reference station operates with a dual receiver and dual antenna to reduce the risk of malfunctioning, which can deteriorate the availability of the POINT service. The initial experimental results of a testbed from corrections generated from the testbed network, including newly installed reference stations, are presented. The results show that the horizontal and vertical accuracies satisfy 2.63 cm and 5.77 cm, respectively. For the purpose of (near) real-time broadcasting of POINT correction data, we designed a correction message format including satellite orbit, satellite clock, satellite signal bias, ionospheric delay, tropospheric delay, and coordinate transformation parameters. The (near) real-time experimental setup utilizing (near) real-time processing of testbed network data and the designed message format are proposed for future testing and verification of the system.

Regional Ts-Tm Relation to Improve GPS Precipitable Water Vapor Conversions

  • Song, Dongseob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • As the retrieval accuracy of PWV estimates from GPS measurements is proportional to the accuracy of water vapor WMT, the WMT model is a significant formulation in the conversion of PWV from the GPS ZWD. The purpose of this study is to develop a MWMT model for the retrieval of highly accurate GPS PWV using the radiosonde measurements from six upper-air observing stations in the region of Korea. The values of 1-hr PWV estimated at four GPS stations during one year are used to evaluate the validity of the MWMT model. It is compared to the PWV obtained from radiosonde data that are located in the vicinity of GPS stations. Intercomparison of radiosonde PWVs and GPS PWVs derived using different WMT models is performed to assess the quality of our MWMT model for Korea. The result in this study indicates that the MWMT model is an effective model to retrieve the enhanced accurate GPS PWV, compared to other GPS PWV derived by Korean annual or global WMT models.

Determination of Korean Weighted Mean Temperature for Calculation of Tropospheric Zenith Hydrostatic Delay (대류권 천정 방향 건조 지연량 계산을 위한 우리나라 가중 평균 온도식 결정)

  • 송동섭;황학;윤홍식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.47-53
    • /
    • 2004
  • Water vapor is an important parameter in monitoring changes in the Earth's climate and it can be used to improve weather forecasting However, it haven't observed accurately by reasons of structural and economic problem of observation. GPS meteorology technique for precipitable water vapor measurement is currently actively being researched an advanced nation. Main issue of GPS meteorology is an accuracy of PWV measurement related weighted mean temperature and meteorological data. In this study, the korean weighted mean temperature had been recalculated by a linear regression method based on meteorological observations from 6 radiosonde stations for 2003 year. We examined the accuracy of PWV estimates from GPS observations and Radiosonde observations by new korean weighted mean temperature and others.

  • PDF

Multi-frequency bands receiver system and its test observation results

  • Han, Seok-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • Over the past several years the millimeter wave VLBI(Veryl Long Baseline Interferometry) observations have been intensively carried out. However In millimeter and sub-millimeter waves observations for VLBI, it is crucial to calibrate correctly the phase variations of the electromagnetic waves propagation through the troposphere. To do this, KVN(Korean VLBI Network) has a unique multi-frequency bands receiver system which is able to perform the simultaneous observations in up to four bands such as 22, 43, 86, and 129GHz. The phase of a source at 22GHz can be used to calibrate the phase of the same source at higher frequency bands. The phase calibration using multi-frequency bands receiver system is possible because the phase fluctuations from a given amount of waver vapor increase linearly with frequency. That is to say that troposphere is non-dispersive property in terms of tropospheric delay fluctuations. In this talk, We present results of test observation for multi-frequency bands receiver system.

  • PDF

Development of real-time car tracking system with RGPS and its error analysis (RGPS를 이용한 실시간 차량관제시스템 구현과 오차분석)

  • Go, Sun-Jun;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.15-24
    • /
    • 2000
  • Stand-alone global position system receiver based on C/A code tracking generates position error of 100m mainly due to the selective availability and ionospheric and tropospheric delay errors. The differential GPS is the most commonly used method for removing those bias range error components. The relative GPS, although somewhat restrictive in its use, is ideally suited to the car monitoring system for improved Automatic Vehicle location, especially where the DGPS infrastructure is not available. The RGPS does not require any additional hardware, facility or external infrastructure and can be operated within the system with existing host computer and communication link. This paper presents detailed description of the RGPS concept and its implementation for real-time data processing. Performance of RGPS is evaluated with real data and is compared with DGPS.

  • PDF

Accuracy Improvement of Multi-GNSS Kinematic PPP with EKF Smoother

  • Choi, Byung-Kyu;Sohn, Dong-Hyo;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2021
  • The extended Kalman filter (EKF) is widely used for global navigation satellite system (GNSS) applications. It is difficult to obtain precise positions with an EKF one-way (forward or backward) filter. In this paper, we propose an EKF smoother to improve the positioning accuracy by integrating forward and backward filters. For the EKF smoother experiment, we performed PPP using GNSS data received at the DAEJ reference station for a month. The effectiveness of the proposed approach is validated with multi-GNSS kinematic PPP experiments. The EKF smoother showed 35%, 6%, and 22% improvement in east, north, and up directions, respectively. In addition, accurate tropospheric zenith total delay (ZTD) values were calculated by a smoother. Therefore, the results from EKF smoother demonstrate that better accuracy of position can be achieved.

Correlation Analysis between GPS Precipitable Water Vapor and Heavy Snowfall on Gangwon Province in Early 2011 (2011년 강원 폭설과 GPS 가강수량의 상관성 분석)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • In this paper, the GPS precipitable water vapor was retrieved by estimating of GPS signal delay in the troposphere during the progress of heavy snowfall on the Gangwon Province, 2011. For this period, the time series analysis between GPS precipitable water vapor and fresh snow depth was accomplished. The time series and the comparison with the GPS precipitable water vapor and the fresh snow depth indicates that the temporal change of two variations is closely related to the progress of the heavy snowfall. Also, the periodicity of GPS precipitable water vapor using the wavelet transform method was showed a similar cycle of saturated water vapor pressure as the limitation of this study span. The result shows that the decrement of GPS precipitable water vapor was conflicted with the increment of fresh snow depth at two sites, Gangneung and Uljin. The correlation between the GPS precipitable water vapor and the saturated water vapor pressure for the event was showed a positive correlation, compare with the non-heavy snowfall periods.

Determination of Absolute Coordinates of Cadastral Satellite Station using Gipsy-Oasis II (Gipsy-Oasis II를 이용한 지적위성기준점의 절대 좌표 결정)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.317-324
    • /
    • 2006
  • This study deals with the precise GPS data processing refer to ITRF2000 through the calculation of absolute coordinates of cadastral satellite station which were established by purpose of cadastral surveying. We used the Gipsy-Oasis II software developed Jet Propulsion Laboratory to estimate daily position of GPS stations with orbital and atmospheric parameters. Especially, we carried out ionospheric delay, tropospheric delay, data existence whether or not and quality control check of observation data during pre-processing. The standard deviation of absolute coordinates was determined better than ${\pm}4mm$ from GPS precise analysis. The RMSE of difference between the result of this study and existing result by using Bernese s/w shows ${\Delta}X={\pm}0.079m$, ${\Delta}Y={\pm}0.019m$ and ${\Delta}Z={\pm}0.031m$.

Multi-channel Two-Way Time Transfer Using a Communication Satellite (통신위성 이용 멀티채널 양방향 시각비교 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Lee, Young-Kyu;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.346-352
    • /
    • 2009
  • UTC (Coordinated Universal Time) has been made by the comparison results and the statistical analysis of primary clocks maintained by national standard institutes. Some kinds of technique have been used for international time transfer; since 1980s the study on methods and development of time transfer has conducted with activation of GPS application. And the more accurate and easier method made it use the official time transfer method for the generation of UTC. But recently TWSTFT (Two-Way Satellite Time and Frequency Transfers) as well as GPS time transfer are increasing in number because the TWSTFT is able to improve the accuracy and precision of time comparison owing to the elimination of the ionospheric and tropospheric delay errors thanks to the reciprocal propagation path. In this paper, we introduce the TWSTFT results by a multi-channel modem comparing with GPS P3-code.

Precise Point Positioning using the BeiDou Navigation Satellite System in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.73-77
    • /
    • 2015
  • Global Positioning System (GPS) Precise Point Positioning (PPP) has been extensively used for geodetic applications. Since December 2012, BeiDou navigation satellite system has provided regional positioning, navigation and timing (PNT) services over the Asia-Pacific region. Recently, many studies on BeiDou system have been conducted, particularly in the area of precise orbit determination and precise positioning. In this paper PPP method based on BeiDou observations are presented. GPS and BeiDou data obtained from Mokpo (MKPO) station are processed using the Korea Astronomy and Space Science Institute Global Navigation Satellite System (GNSS) PPP software. The positions are derived from the GPS PPP, BeiDou B1/B2 PPP and BeiDou B1/B3 PPP, respectively. The position errors on BeiDou PPP show a mean bias < 2 cm in the east and north components and approximately 3 cm in the vertical component. It indicates that BeiDou PPP is ready for the precise positioning applications in the Asia-Pacific region. In addition, BeiDou tropospheric zenith total delay (ZTD) is compared to GPS ZTD at MKPO station. The mean value of their difference is approximately 0.52 cm.