DOI QR코드

DOI QR Code

Correlation Analysis between GPS Precipitable Water Vapor and Heavy Snowfall on Gangwon Province in Early 2011

2011년 강원 폭설과 GPS 가강수량의 상관성 분석

  • 송동섭 (국립강원대학교 건설방재공학과)
  • Received : 2012.02.15
  • Accepted : 2012.02.24
  • Published : 2012.02.29

Abstract

In this paper, the GPS precipitable water vapor was retrieved by estimating of GPS signal delay in the troposphere during the progress of heavy snowfall on the Gangwon Province, 2011. For this period, the time series analysis between GPS precipitable water vapor and fresh snow depth was accomplished. The time series and the comparison with the GPS precipitable water vapor and the fresh snow depth indicates that the temporal change of two variations is closely related to the progress of the heavy snowfall. Also, the periodicity of GPS precipitable water vapor using the wavelet transform method was showed a similar cycle of saturated water vapor pressure as the limitation of this study span. The result shows that the decrement of GPS precipitable water vapor was conflicted with the increment of fresh snow depth at two sites, Gangneung and Uljin. The correlation between the GPS precipitable water vapor and the saturated water vapor pressure for the event was showed a positive correlation, compare with the non-heavy snowfall periods.

본 연구에서는 2011년 강원도 영동 지방의 폭설 기간 동안 GPS 위성 신호의 대류권 지연량 추정으로부터 대기 가강수량을 복원하였다. 폭설이 발생하는 기간 동안에 GPS 가강수량과 신적설 발생량과의 상관관계에 대한 분석을 실시하였다. 분석 결과, GPS를 이용하여 복원한 대류권에서의 가강수량 증가가 발생된 이후에 강설량이 증가하는 추세를 나타냈다. 또한 웨이블릿을 이용한 주기 분석에서는 본 연구기간에 한해서 GPS 가강수량의 주기가 포화수증기압의 주기와 유사한 것으로 검출되었다. GPS 가강수량의 감소와 이에 대응하는 신적설량의 증감은 두 연구 지역인 강릉과 울진에서 모두 다르게 증감하는 경향을 나타냈다. 폭설 기간 동안 GPS 가강수량과 포화수증기압의 상관 계수는 강설이 발생하지 않는 기간 동안의 결과와는 달리 양의 상관성을 갖는 것으로 나타났다.

Keywords

References

  1. 기상청 (2011), 기상청 보도자료(2011.02.13).
  2. 김지언, 권태영, 이방용 (2005), 영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성, Ocean and Polar Research, 한국해양연구원, Vol. 27, No. 3, pp. 237-250. https://doi.org/10.4217/OPR.2005.27.3.237
  3. 차은정 (2010), 2010년 1월 4일 수도권 대설 현황 및 사회.경제적 의미, 한국방재학회지, 한국방재학회, 제10권, 제4호, 통권 39호, pp. 6-13.
  4. 송동섭 (2007), GPS 관측데이터 정밀 해석을 통한 가강 수량 추정 정확도 향상, 박사학위논문, 성균관대학교, pp. 41-46.
  5. 송동섭 (2009a), 기압의 역해면 경정 보정을 이용한 GPS PWV 복원 능력 개선, 한국측량학회지, 한국측량학회, 제27권, 제5호, pp. 535-544.
  6. 송동섭 (2009b), 한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링, 한국측량학회지, 한국측량학회, 제27권, 제5호, pp. 565-574.
  7. 송동섭, 윤홍식, 조재명 (2002), GPS를 이용한 대류권의 수증기량 추정에 관한 연구, 한국측량학회지, 한국측량학회, 제20권, 제2호, pp. 215-222.
  8. 유철상, 신창건, 윤용남 (2004), 가강수량의 추정 및 분석, 대한토목학회지, 대한토목학회, 제24권, 제5B호, pp. 413-420.
  9. 이재원, 조정호, 백정호, 박종욱, 박지업 (2008), 정규관측자료와 GPS 연직누적 수증기량을 이용한 안개에 대한 비교연구, 대기, 한국기상학회, 제18권, 제4호, pp. 417-427.
  10. 이재준, 장주영, 곽창재 (2010), 각종 수문인자의 갱년별 특성변화 분석(II) - 변동성, 주기성을 중심으로, 한국수자원학회논문집, 한국수자원학회, 제43권, 제5호, pp.483-493.
  11. Bevis, M., S. Businger, T. Herring, C. Rocken, R. Anthes, and R. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., Vol. 97, pp. 15787-15801. https://doi.org/10.1029/92JD01517
  12. Bevis, M., S. Businger, and S. Chiswell (1994), GPS meteorology: Mapping zenith delays onto precipitable water, J. Appl. Meteorol., Vol. 33, No. 3, pp. 379-386. https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
  13. Morlet, J. (1982), Wave propagation and sampling theory, Geophysics, Vol. 47, pp. 222-236. https://doi.org/10.1190/1.1441329
  14. Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger (1993), Sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett., Vol. 20 No. 23, pp. 2631-2634. https://doi.org/10.1029/93GL02935
  15. Solbrig, P. (2000), Untersuchungen ber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, (In German).
  16. Song, D. S., and D. A. Grejner-Brzezinska (2009), Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event, Earth, Planets and Space, Vol. 61, No. 10, pp. 1117-1125. https://doi.org/10.1186/BF03352964
  17. Suparta, W., Z. A. Abdul Rashid, M. A. Mohd Ali, B. Yatim, and G. J. Fraser (2008), Observations of Antarctic precipitable water vapor and its response to the solar activity based on GPS sensing, J. Atmos. Solar-Terr. Phys., Vol. 70, pp. 1419-1447. https://doi.org/10.1016/j.jastp.2008.04.006

Cited by

  1. Analysis of the Relationship of Water Vapor with Precipitation for the Winter ESSAY (Experiment on Snow Storms At Yeongdong) Period vol.26, pp.1, 2016, https://doi.org/10.14191/Atmos.2016.26.1.019
  2. Performance Analysis of Mapping Functions and Mean Temperature Equations for GNSS Precipitable Water Vapor in the Korean Peninsula vol.5, pp.2, 2016, https://doi.org/10.11003/JPNT.2016.5.2.075
  3. GPS 관측소 기선 처리에 따른 가강수량 특성 분석 vol.34, pp.7, 2012, https://doi.org/10.5467/jkess.2013.34.7.626
  4. 2014년 강원 폭설동안 GPS 가강수량 탐측 vol.33, pp.4, 2012, https://doi.org/10.7848/ksgpc.2015.33.4.305
  5. GNSS 가강수량과 기상인자의 상호 연관성 분석 vol.33, pp.4, 2015, https://doi.org/10.7848/ksgpc.2015.33.4.317