DOI QR코드

DOI QR Code

Regional Ts-Tm Relation to Improve GPS Precipitable Water Vapor Conversions

  • Song, Dongseob (Dept. of Earth and Environmental Engineering, Kangwon National University)
  • Received : 2018.01.21
  • Accepted : 2018.02.25
  • Published : 2018.02.28

Abstract

As the retrieval accuracy of PWV estimates from GPS measurements is proportional to the accuracy of water vapor WMT, the WMT model is a significant formulation in the conversion of PWV from the GPS ZWD. The purpose of this study is to develop a MWMT model for the retrieval of highly accurate GPS PWV using the radiosonde measurements from six upper-air observing stations in the region of Korea. The values of 1-hr PWV estimated at four GPS stations during one year are used to evaluate the validity of the MWMT model. It is compared to the PWV obtained from radiosonde data that are located in the vicinity of GPS stations. Intercomparison of radiosonde PWVs and GPS PWVs derived using different WMT models is performed to assess the quality of our MWMT model for Korea. The result in this study indicates that the MWMT model is an effective model to retrieve the enhanced accurate GPS PWV, compared to other GPS PWV derived by Korean annual or global WMT models.

Keywords

References

  1. Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R.A., Rocken, C., and Ware, R.H. (1994), GPS meteorology - mapping zenith wet delays onto precipitable water, Journal of Applied Meteorology, Vol. 33, pp. 379-386. https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
  2. Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., and Ware, R.H. (1992), GPS meteorology - remotesensing of atmospheric water-vapor using the global positioning system, Journal of Geophysical Research-Atmospheres, Vol. 97, pp. 15787-15801. https://doi.org/10.1029/92JD01517
  3. Cao, Y., Zheng, F., Xie, Y., and Bi, Y. (2008), Impact of the weighted mean temperature on the estimation of GPS precipitable water vapor, International Conference on Microwave and Millimeter Wave Technology, ICMMT, 21-24 April, Nanjing, China, pp. 799-801.
  4. Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E., and Elgered, G. (1985), Geodesy by radio interferometry - effects of atmospheric modeling errors on estimates of baseline length, Radio Science, Vol. 20, pp. 1593-1607. https://doi.org/10.1029/RS020i006p01593
  5. Feng, Y., Bai, Z., Fang, P., and Williams, A. (2001), GPS water vapour experimental results from observations of the Australian regional GPS network (ARGN), A Spatial Odyssey : 42nd Australian Surveyors Congress, ISAUST, 25-28 September, Brisbane, Austrailia.
  6. Jade, S., Vijayan, M.S. M., Gaur, V.K., Prabhu, T.P., and Sahu, S.C. (2005), Estimates of precipitable water vapour from GPS data over the Indian subcontinent, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 67, pp. 623-635. https://doi.org/10.1016/j.jastp.2004.12.010
  7. Larson, K.M. and Miyazaki, S. (2008), Resolving static offsets from high-rate GPS data: The 2003 Tokachi-oki earthquake, Earth Planets and Space, Vol. 60, pp. 801-808. https://doi.org/10.1186/BF03352831
  8. Lichten, S.M. and Border, J.S. (1987), Strategies for highprecision global positioning system orbit determination, Journal of Geophysical Research-Solid Earth and Planets, Vol. 92, pp. 12751-12762. https://doi.org/10.1029/JB092iB12p12751
  9. Liou, Y.A., Teng, Y.T., Van Hove, T., and Liljegren, J.C. (2001), Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, Journal of Applied Meteorology, Vol. 40, pp. 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
  10. Mendes, V.B., Collins, J.P., and Langley, R.B. (1995), The effect of tropospheric propagation delay errors in airborne GPS precise positioning, 8th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION, 12-15 September, Palm Springs, C.A., pp. 1681-1689.
  11. Nordman, M., Eresmaa, R., Boehm, J., Poutanen, M., Koivula, H., and Jarvinen, H. (2009), Effect of troposphere slant delays on regional double difference GPS, Earth Planets and Space, Vol. 61, pp. 845-852. https://doi.org/10.1186/BF03353195
  12. Raju, C.S., Saha, K., Thampi, B.V., and Parameswaran, K. (2007), Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements, Annales Geophysicae, Vol. 25, pp. 1935-1948. https://doi.org/10.5194/angeo-25-1935-2007
  13. Ross, R.J. and Rosenfeld, S. (1997), Estimating mean weighted temperature of the atmosphere for global positioning system applications, Journal of Geophysical Research-Atmospheres, Vol. 102, pp. 21719-21730. https://doi.org/10.1029/97JD01808
  14. Saastamoinen, J. (1972), Atmospheric correction for troposphere and stratosphere in radio ranging satellites, In: Henriksen, S. W., Mancini, A., and Chovitz, B. H. (eds.), The Use of Artificial Satellites for Geodesy, American Geophysical Union, Washington, D. C., pp. 485p.
  15. Schueler, T., Posfay, A., Hein, G. W., and Biberger, R. (2001), A global analysis of the mean atmospheric temperature for GPS water vapor estimation, 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION, 11-14 September, Salt Lake City, Utah, pp. 2746-2489.
  16. Solbrig, P. (2000), Untersuchungen uber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Ph.D. dissertation, University FAF Munich, Germany.
  17. Song, D.S. and Grejner-Brzezinska, D.A. (2009), Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event, Earth Planets Space, Vol. 61, No. 10, pp. 1117-1125. https://doi.org/10.1186/BF03352964
  18. Song, D.S. and Yun, H.S. (2008), Crustal strain pattern analysis of Korean peninsula using repeated GPS measurements, KSCE Journal of Civil Engineering, Vol. 12, No. 4, pp. 267-273. https://doi.org/10.1007/s12205-008-0267-x
  19. Song, D.S., Yun, H.S., and Lee, D.H. (2008), Verification of accuracy of precipitable water vapour from GPS during typhoon rusa, Survey Review, Vol. 40, pp. 19-28. https://doi.org/10.1179/003962608X253448
  20. Wang, J.H., Zhang, L.Y., and Dai, A.G. (2005), Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications, Journal of Geophysical Research-Atmospheres, Vol. 110, pp. D21101-D21117. https://doi.org/10.1029/2005JD006215