• Title/Summary/Keyword: tropical cyclones

Search Result 83, Processing Time 0.028 seconds

Performance of MTM in 2006 Typhoon Forecast (이동격자태풍모델을 이용한 2006년 태풍의 진로 및 강도 예측성능 평가)

  • Kim, Ju-Hye;Choo, Gyo-Myung;Kim, Baek-Jo;Won, Seong-Hee;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The Moving-nest Typhoon Model (MTM) was installed on the Korea Meteorological Administration (KMA)'s CRAY X1E in 2006 and started its test operation in August 2006 to provide track and intensity forecasts of tropical cyclones. In this study, feasibility of the MTM forecast is compared with the Global Data Assimilation and Prediction System (GDAPS) of the KMA and the operational typhoon forecast models in the Japan Meteorological Agency (JMA), from the sixth tropical cyclone to the twentieth in 2006. Forecast skills in terms of the storm position error of the two KMA models were comparable, but MTM showed a slightly better ability. While both GDAPS and MTM produced larger errors than JMA models in track forecast, the predicted intensity was much improved by MTM, making it comparable to the JMA's typhoon forecast model. It is believed that the Geophysical Fluid Dynamics Laboratory (GFDL) bogus initialization method in MTM improves the ability to forecast typhoon intensity.

Emerging issues and new frameworks for wind loading on structures in mixed climates

  • Solari, Giovanni
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • Starting from an overview on the research on thunderstorms in the last forty years, this paper provides a general discussion on some emerging issues and new frameworks for wind loading on structures in mixed climates. Omitting for sake of simplicity tropical cyclones and tornadoes, three main aspects are pointed out. The first concerns the separation and classification of different intense wind events into extra-tropical depressions, thunderstorms and gust fronts, with the aim of improving the interpretation of the phenomena of engineering interest, the probabilistic analysis of the maximum wind velocity, the determination of the wind-induced response and the safety format for structures. The second deals with the use of the response spectrum technique, not only as a potentially efficient tool for calculating the structural response to thunderstorms, but also as a mean for revisiting the whole wind-excited response in a more general and comprehensive framework. The third involves the statistical analysis of extreme wind velocities in mixed climates, pointing out some shortcomings of the approaches currently used for evaluating wind loading on structures and depicting a new scenario for a more rational scheme aiming to pursue structural safety. The paper is set in the spirit of mostly simplified analyses and mainly qualitative remarks, in order to capture the conceptual aspects of the problems dealt with and put on the table ideas open to discussion and further developments.

Vulnerability model of an Australian high-set house subjected to cyclonic wind loading

  • Henderson, D.J.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.269-285
    • /
    • 2007
  • This paper assesses the damage to high-set rectangular-plan houses with low-pitch gable roofs (built in the 1960 and 70s in the northern parts of Australia) to wind speeds experienced in tropical cyclones. The study estimates the likely failure mode and percentage of failure for a representative proportion of houses with increasing wind speed. Structural reliability concepts are used to determine the levels of damage. The wind load and the component connection strengths are treated as random variables with log-normal distributions. These variables are derived from experiments, structural analysis, damage investigations and experience. This study also incorporates progressive failures and considers the inter-dependency between the structural components in the house, when estimating the types and percentages of the overall failures in the population of these houses. The progressively increasing percentage of houses being subjected to high internal pressures resulting from damage to the envelope is considered. Results from this study also compare favourably with levels of damage and related modes of failure for high-set houses observed in post-cyclone damage surveys.

Study on hydrologic variability of Soyang dam associated with tropical cyclones effects (태풍 영향을 고려한 소양강댐의 수문 변동특성에 관한 연구)

  • Kang, Ho Yeong;Hwang, Sung Hwan;Choi, Ji Hyeok;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.456-456
    • /
    • 2017
  • 지구온난화에 의한 태풍강도 증가로 한반도지역은 잠재적 위험성에 항상 노출되어있다. 따라서 본 연구는 한강의 대표적 다목적댐인 소양강댐을 대상으로 한반도 태풍영향을 정량화하고 그에 따른 수문변화특성을 피어슨 상관분석(Pearson Correlation)과 순위 분석(Rank Analysis)을 이용하여 조사하였다. 지오포텐셜 고도자료와 GPCP 강우자료를 분석한 결과 소양강댐의 여름철 유출량 중 태풍에 의한 유출이 크지 않았지만 엘리뇨에서 라니냐로 전환되는 시기의 태풍에 의한 유출량은 반 이상을 차지할 정도로 크게 나타났다. Rank분석결과 태풍발생비율(n/N)에 대한 첨두유량의 변화는 크지만 첨두유량의 발생빈도와 지속시간의 변화는 뚜렷하지 않은 것으로 나타났고 첨두발생시간은 더 지연되는 특성을 보였다. 그러나 High Flow 분석결과에서는 첨두유량과 첨두유량의 발생시기 변화의 통계적 유의성은 나타나지 않았으나 첨두유량 이상의 유출발생빈도와 지속기간은 증가하는 것으로 나타났다. 본 연구는 해수면 온도 변화에 따른 대규모 대기 순환패턴과 소양강댐 유역의 수문변화특성의 관계를 파악하기 위한 기초자료를 제공할 것으로 기대된다.

  • PDF

The 2021 Australian/New Zealand Standard, AS/NZS 1170.2:2021

  • John D. Holmes;Richard G.J. Flay;John D. Ginger;Matthew Mason;Antonios Rofail;Graeme S. Wood
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.95-104
    • /
    • 2023
  • The latest revision of AS/NZS 1170.2 incorporates some new research and knowledge on strong winds, climate change, and shape factors for new structures of interest such as solar panels. Unlike most other jurisdictions, Australia and New Zealand covers a vast area of land, a latitude range from 11° to 47°S climatic zones from tropical to cold temperate, and virtually every type of extreme wind event. The latter includes gales from synoptic-scale depressions, severe convectively-driven downdrafts from thunderstorms, tropical cyclones, downslope winds, and tornadoes. All except tornadoes are now covered within AS/NZS 1170.2. The paper describes the main features of the 2021 edition with emphasis on the new content, including the changes in the regional boundaries, regional wind speeds, terrain-height, topographic and direction multipliers. A new 'climate change multiplier' has been included, and the gust and turbulence profiles for over-water winds have been revised. Amongst the changes to the provisions for shape factors, values are provided for ground-mounted solar panels, and new data are provided for curved roofs. New methods have been given for dynamic response factors for poles and masts, and advice given for acceleration calculations for high-rise buildings and other dynamically wind-sensitive structures.

Possible Effect of Western North Pacific Monsoon on Tropical Cyclone Activity around East China Sea (북서태평양 몬순이 동중국해 주변의 태풍활동에 미치는 영향)

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.194-208
    • /
    • 2017
  • This study analyzed the correlation between tropical cyclone (TC) frequency and the western North Pacific monsoon index (WNPMI), which have both been influential in East China Sea during the summer season over the past 37 years (1977-2013). A high positive correlation was found between these two variables, but it did not change even if El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during an eleven-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference in 850 hPa and 500 hPa stream flows between the two phases, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East China Sea, which played a role in the anomalous steering flows that moved TCs into this region. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase.

FLASH FLOOD FORECASTING USING REMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART II : MODEL APPLICATION

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.123-134
    • /
    • 2002
  • A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic region of the United States. The model incorporated the evolving structure and frequency of intense weather systems of the study area for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters associated with synoptic atmospheric conditions as Input. Here, we present results from the application of the Quantitative Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 40% and up to 55 % were obtained.

  • PDF

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

Roof tile frangibility and puncture of metal window shutters

  • Laboy-Rodriguez, Sylvia T.;Smith, Daniel;Gurley, Kurtis R.;Masters, Forrest J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.185-202
    • /
    • 2013
  • The goal of this study was to investigate the vulnerability of roof tile systems and metal shutters to roof tile debris. Three phases addressed the performance of tile roof systems and metal shutters impacted by roof tile debris. The first phase experimentally evaluated the tile fragment size and quantity generated by a tile striking a tile roof system. The second phase experimentally quantified the puncture vulnerability of common metal panel shutter systems as a function of tile fragment impact speed. The third phase provided context for interpretation of the experimental results through the use of a tile trajectory model. The results provide supporting evidence that while metal panel window shutters provide significant protection against a prevalent form of windborne debris, these systems are vulnerable to tile fragment puncture in design level tropical cyclones. These findings correlate with field observations made after Hurricane Charley (2004).

Assessing synoptic wind hazard in Australia utilising climate-simulated wind speeds

  • Sanabria, L.A.;Cechet, R.P.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.131-145
    • /
    • 2012
  • Severe wind is one of the major natural hazards in Australia. The component contributors to economic loss in Australia with regards to severe wind are tropical cyclones, thunderstorms and subtropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This paper discusses wind hazard under current and future climate conditions using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2011) where the wind hazard is dominated by synoptic and thunderstorm gust winds.